
Report No. NAWCADWAR-93023-70 AD--A269 110
'E~illA'.

REFERENCE MODEL FOR PROJECT SUPPORT
ENVIRONMENTS VERSION 1.0

Project Support Environment Standards Working Group;
Editors: P. Oberndorf (NAWCADWAR-Code 7031, A. Brown (SEI),
D. Carney (SEI) and M. Zelkowitz (NIST & U. of Md.)

Systems and Software Technology Department (Code 7031)
NAVAL AIR WARFARE CENTER
AIRCRAFT DIVISION WARMINSTER
P.O. Box 5152
Warminster, PA 18974-0591 O T IC -

ELECTE
EP 081

28 FEBRUARY 1993

FINAL REPORT
Program Element No. 0604574N
Work Unit No. BPJ30
Project No. X1976
Task No. N/A

Approved for Public Release, Distribution is Unlimited 93-i20752

SPACE AND NAVAL WARFARE SYSTEMS COMMAND (SPAWAR-231-5)
2451 CRYSTAL PARK 5, ROOM 701
WASHINGTON, DC 20363-5200

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the
Naval Air Warfare Center, Aircraft Division, Warminster is arranged for specific identification
purposes. Each number consists of the Center acronym, the calendar year in which the
number was assigned, the sequence number of the report within the specific calendar year,
and the official 2-digit correspondence code of the Functional Department responsible for
the report. For example: Report No. NAWCADWAR-92001-60 indicates the first Center
report for the year 1992 and prepared by the Air Vehicle and Crew Systems Technology
Department. The numerical codes are as follows:

CODE OFFICE OR DEPARTMENT

00 Commanding Officer, NAWCADWAR

01 Technical Director, NAWCADWAR

05 Computer Department

10 AntiSubmarine Warfare Systems Department

20 Tactical Air Systems Department

30 Warfare Systems Analysis Department

50 Mission Avionics Technology Department

60 Air Vehicle & Crew Systems Technology Department

70 Systems & Software Technology Department

80 Engineering Support Group

90 Test & Evaluation Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial
products herein do not constitute an endorsement by the Government nor do they convey
or imply the license or right to use such products.

Reviewed By: : _ _____ Date: x
Branch Head

Reviewed By: ,___ __ __ __/'_ Date: • .,/ f3
DivisiO•nead

/1 / -.

Reviewed By: Date:
DirectorlDeputy Director

1 Form Approved
REPORT DOCUMENTATION PAGE oI I .

P u b li c r e p o it n b u r d e nt fo r t h is co • e mt io n o f lm f o rf ft a t I.o n i$ es t i m at e d tO av if e I h o u r p e r r e uW i o e , i nl u d i ng t h e t l m el I o r i e w in g if s t u c t o n s . M a r c h in g e x t i n g d a t a so u r c e s.

gathering and maitalning-he data needed, coml0 eting and reviewing the collection of information Sed comntsf11 regarding this burden estimate or any other asigct of this
collection of eformnation, including sugge.stion for r Ie ng this Curden to Washiriton Headouarters Services. Directorate oIncl tion Operations and Reports. 21S Jetferson
Davis Highway. Suite 1204. Arlingtbn. VA 222024302. and to the Office of Management and Budget. Paperwork Reduction Prolct (0?04-06l8). Washington. DC 20S03

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 28 FEB 1993 Final
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

REFERENCE MODEL FOR PROJECT SUPPORT
ENVIRONMENTS VERSION 1.0 Program Element

No. 0604574N
6. AUTHOR(S) Work Unit No. BPJ30

Project Support Environment Standards Working Group; Project No. X1976
Editors: P. Oberndorf (Code 7031, A. Brown (SEI), Task No.: N/A

D. Carney (SEI) and M. Zelkowitz (NIST & U. of Md.)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NAVAL AIR WARFARE CENTER REPORT NUMBER

AIRCRAFT DIVISION WARMINSTER
P.O. Box 5152 NAWCADWAR-93023-70
Warminster, PA 18974-0591

9. SPONSORING/IMONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING
SPACE AND NAVAL WARFARE SYSTEMS COMMAND AGENCY REPORT NUMBER

SPAWAR-231-5
2451 CRYSTAL PARK 5, ROOM 70
WASHINGTON, DC 20363-5200

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION. AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release, Distribution is Unlimited

13. ABSTRACT (Maximum 200 words)

This report documents a reference model that describes the full scope of functionality that is expected
of a Project Support Environment (PSE). The scope includes support for System Engineering, Software
Engineering, and Life-Cycle Process Engineering as well as the infrastructure services required to support
these. The first three chapters contain a general description of the model. The remaining chapters provide
detail of individual aspects of the model.

14. SUBJECT TERMS 1S. NUMBER OF PAGES

Project Support Environment, Engineering Environments, Software
Development Environment, Reference Models 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NS .• -1C .0 i! Standard Form 298 (Rev 2 89)
o'.0 b, .%, Ni .' % I S

NAWCADWAR-93023-70

I

I

Next Generation Computer Resources

Reference Model
for

Project Support Environments

Version 1.0

March 1, 1993

NAWCADWAR-93023-70

VERSION 1.0

Comments on this document axe welcome, see the last pages of this document for information
about submitting comments.

This document contains trademarks and registered trademarks which belong to their associated
holders. The use of any trademarks in this document is not intended in any way to infringe on
the rights of the trademark holder.

W This document generated March 5, 1993

Aooession For
XTIS GRA&I
DTIC TAB 0
Unannounced 5
Justification

By-

Distributiou/

Availability Rodel
Availl and/or

Dlst Spec il'P I - 2

NAWCADWAR-93023-70

Contents

PREFACE vii

ACKNOWLEDGEMENTS viii

1 BACKGROUND 1

1.1 Project Support Environment Standards Working Group 1

1.2 A pproach . 2

1.3 Domain of Interest 2

1.4 Scope of the M odel 3

1.5 Types of Project Support 4

2 DESCRIPTION OF THE MODEL 5

2.1 Key Concepts and Terms 6

2.2 The Reference Model 7

2.2.1 Description of End-User Services 9

2.2.2 Description of Framework Services Q

2.3 Discussion of the Model 10

2.3.1 Conceptual Models vs. Actual Environments 10

2.3.2 Rationale for the Groupings in the Model 10

2.3.3 Place of the Target System in the Model 12

3 NOTES ON READING THE SERVICE DESCRIPTIONS 13

ii

NAWCADWAR-93023-7O

VERSION 1.0 "ii

3.1 On the Relationships dimension 14

4 TECHNICAL ENGINEERING SERVICES 15

4.1 System Engineering Services 16

4.1.1 System Requirements Engineering Service 16

4.1.2 System Design and Allocation Service 17

4.1.3 System Simulation and Modeling Service 18

4.1.4 System Static Analysis Service 19

4.1.5 System Testing Service 20

4.1.6 System Integration Service 20

4.1.7 System Re-engineering Service 21

4.1.8 Host-Target Connection Service 22

4.1.9 Target Monitoring Service 22

4.1.10 Traceability Service 23

4.2 Software Engineering Services 24

4.2.1 Software Requirements Engineering Service 24

4.2.2 Software Design Service 25

4.2.3 Software Simulation and Modeling Service 26

4.2.4 Software Verification Service 27

4.2.5 Software Generation Service 28

4.2.6 Compilation Service 28

4.2.7 Software Static Analysis Service 30

4.2.8 Debugging Service 31

4.2.9 Software Testing Service 31

4.2.10 Software Build Service 32

4.2.11 Software Reverse Engineering Service 33

4.2.12 Software Re-engineering Service 34

4.2.13 Software Traceability Service 35

NAWCADWAR-93023-70

iv

4.3 Life-Cycle Process Engineering Services 36

4.3.1 Process Definition Service 36

4.3.2 Process Library Service 37

4.3.3 Process Exchange Service 38

4.3.4 Process Usage Service 38

5 TECHNICAL MANAGEMENT SERVICES 40

5.1 Configuration Management Service 40

5.2 Change Management Service 42

5.3 Reuse Management Service 42

5.4 Metrics Service 44

6 PROJECT MANAGEMENT SERVICES 46

6.1 Scheduling Service 46

6.2 Estimation Service 48

6.3 Risk Analysis Service .. 48

6.4 Tracking Service 49

7 SUPPORT SERVICES 51

7.1 Common Support Services 52

7.1.1 Text Processing Service 52

7.1.2 Numeric Processing Service 53

7.1.3 Figure Processing Service54

7.1.4 Audio and Video Processing Service 55

7.1.5 Calendar and Reminder Service 56

7.1.6 Annotation Service 57

7.2 Publishing Service 57

7.3 Presentation Preparation Service 59

7.4 User Communication Services 60

NAWCADWAR-93023-70

VERSION 1.0 v

7.4.1 M ail Service 60

7.4.2 Bulletin Board Service 61

7.4.3 Conferencing Service 62

7.5 PSE Administration Services 63

7.5.1 Framework Administration and Configuration Services 63

7.5.2 Tool Installation and Customization Service 64

7.5.3 PSE User and Role Management Service 65

7.5.4 PSE Resource Management Service 66

7.5.5 PSE Status Monitoring Service 66

7.5.6 PSE Diagnostic Service 67

7.5.7 PSE Interchange Service 67

7.5.8 PSE User Access Service 68

8 FRAMEWORK SERVICES 69

8.1 Operating System Services 70

8.2 Object Management Services 71

8.3 Policy Enforcement Services 73

8.4 Process Management Services 74

8.5 Communication Service 75

8.6 User Interface Services 75

8.7 User Command Interface Services 76

8.8 Network Services 77

A EXTENDED DEFINITIONS OF KEY TERMS 78

B COMMON PROJECT ACTIVITIES AND THEIR RELATION TO REFER-
ENCE MODEL SERVICES 82

B.1 Management Activities ... 82

B.1.1 Acquisition Management 82

B.1.2 Project Management 83

NAWCADWAR-93023-70

vi

B.1.3 Quality Assurance 84

B.2 Engineering Activities 84

B.2.1 System Engineering 84

B.2.2 Software Engineering 85

B.2.3 Process Engineering 85

B.3 Supportability Activities .. 85

B.3.1 Logistics Support .. 85

B.3.2 Operation and Maintenance 86

C RATIONALE 87

D ABBREVIATIONS and ACRONYMS 91

E REFERENCES 93

INDEX 94

SUBMISSION OF COMMENTS 98

NAWCADWAR-93023-70

PREFACE

The objective of the Next Generation Computer Resources (NGCR) program is to restructure
the Navy's approach to acquisition of standard computing resources to take better advantage
of commercial advances and investments. It is expected that this new approach will result in
reduced production costs, reduced operation anid maintenance costs, and more effective system
integration. The program revolves around the selection of commercially-based interface stan-
dards in six areas: multi-system interconnects, multiprocessor interconnects, operating systems,
database management systems, project support environments, and graphics standards.

The working group concentrating on project support environment standards is the Project Sup-
port Environment Standards Working Group (PSESWG, pronounced "peace-wig"). Like the
other NGCR working groups, the goal of the PSESWG is to establish standards for interfaces;
the particular domain of interest for the PSESWG is project support environment interfaces. As
an initial step toward this goal the members of the working group have produced this Reference
Model for a Project Support Environment (PSE). The first three chapters contain a general
description of the model. The remaining chapters provide detail of individual aspects of the
model.

In releasing this document, there is no intention of providing a model to which any environ-
ment might "conform." The reference model is a way of expressing an understanding of the
functionality of a populated environment. It is not an architectural description to be used in
implementing an environment.

vii

NAWCADWAR-93023-70

A CKN OWLED G EMENT S

This document has been developed with the help of a large group of people wvho participated
in quarterly meetings of the NGCR PSESWG during 1991 and 1992. Members of this working
group include:

Carole Amos, Todd Barborek, Jerry Brookshire, Alan Brown, D. Bruce Macindoe, David Car-
ney, Peter Clark, Geoff Clow, Douglas Cook, Charlotte Crawford, Hugh Davis, Anthony Earl,
Michael Edwards, Bob Ekman, Peter Feiler, James Ferguson, Thomas Grobicki, Dick Grote,
Stuart Jeans, George Hacken, Barbara Haleen, Hal Hart, Richard Hawkes, Henry Heffernan,
Bob Hokanson, Judy Kerner, Tammy Kirkendall, Joe Lomax, Monte Luhr, Steve Lyda, Brad

Lyon, Joyce Lyttle, Zyg Martynowicz, John McGregor, Charles McPherson, Les Mopps, Ed
Morris, Bob Munck, Philip Nau, Kathy O'Toole, Bob Page, Juidi Peterson, Richard Randall,
Jum Reed, Judy Ryerson, Michael Shapiro, Mike Snodgrass, William Sudman, Linwood Sutton,
Ramiro Valderama, Rosa Weber, Tom Wheeler, William Wong, and Marvin Zelkowitz

The original conceptual basis of the reference model came from Peter Feiler, who also partic-
ipated in the earliest stages of PSESWG. The principal editors of this document wvere Alan
Brown, David Carney, Patricia Oberndorf, and Marvin Zelkowitz, who are also responsible for

the text of the first three chapters

The concept for the "prism" drawing was a particular contribution of Michael Shapiro.

Many valuable contributions to the body of the document were made by: Peter Clark, Geoff

Clow, Bob Ekman, Peter Feiler, Hal Hart, Bob Hokanson, Carol ,vorgan, Bob Munck, Carl
Schmiedekamp, Michael Shapiro, Bill Sudman, and Rosa Weber. The Reference Model has also

benefitted from the valuable comments made by other reviewers, including: Ger van den Blroek,
Anthony Earl, Herm Fischer, Alex Lewin, Lolo Penedo, and Ian Thomas.

This list of contributors was compiled from various sources; if any names of contributors have
been accidentally omitted, the oversight is deeply regretted.

vnli

NAWCADWAR-93023-70

Chapter 1

BACKGROUND

The U.S. Navy has embarked on the Next Generation Computer Resources (NGCR) program
to fulfill its need for standard computing resources. The program revolves around the selection
of interface standards in six areas. The interface standards will be based on existing industry
standards with multi-vendor support. The objective is to restructure the Navy's approach to
take better advantage of commercial advances and to reduce cost and duplication of computer
resources. This document is part of the NGCR program.

1.1 Project Support Environment Standards Working Group

One of the areas chosen by NGCR for interface standardization is that of project support
environments (PSEs). The initial focus for the PSE Standards Working Group (PSESWG) is
to identify areas in support environments that are in need of standardization and for which
industry accepted standards may be available within the NGCR's timeframe. The primary goal
of the PSESWG is to provide an interface standard that can be used by project managers as an
aid in procuring or assembling a Project Support Environment (PSE) for a particular project
or organization. This standard will itself consist of several interface standards that have been
chosen for their compatibility and consistency and their ability to support a wide range of project
support environment needs. This standard will use industry standards where possible, promoting
use of commercial off-the-shelf (COTS) and government off-the-shelf (GOTS) products.

The first step towards this goal for PSESWG is the establishment of a reference model that
describes the full scope of functionality that is expected of a PSE. This reference model will
provide the basis for:

* Determination of and examination of interfaces for which standards might be included in
the final PSESWG standard.

9 Identification of requirements for interfaces which might be beneficial to standardize but
for which no industry standardization activity can be identified.

I

NAWCADWAR-93023-70

2

* Consensus throughout the environments community.

While there are several other reference model activities that are relevant to this goal, none
individually has the scope that is required nor provides a definition of the concepts at a suitable
level of abstraction. Thus the reference model presented in this document is new, although it
builds on those other reference models. The PSESWG activity is being coordinated with those
other activities whenever possible.

1.2 Approach

Prior to developing this reference model, a large collection of existing environment efforts and
models was inspected. This includes (but is not limited to) the Software Technology for Adapt-
able, Reliable Systems (STARS) program, the National Institute of Standards and Technology
(NIST) Integrated Software Engineering Environment (ISEE) working group, the European
Computer Manufacturers Association (ECMA) TC33 Task Group on the Reference Model, the
Ada Joint Program Office Evaluation and Validation Team, the Air Force Software Life Cycle
Support Environment (SLCSE) project, Honeywell's Engineering Information Systems (EIS)
program, the Conceptual Environment Architecture Reference Model (CEARM) effort, and the
standardization committees within IEEE and ANSI for POSIX and for CASE Tool Integration
Models (CTIM). The products of those efforts have been analyzed and many valuable aspects
have been combined and abstracted.

1.3 Domain of Interest

The approach of this model is most directly comparable to the approach evidenced in the POSIX
Open Systems Environment and the NIST/ECMA Reference Model for Frameworks of Software
Engineering Environments. However, while both of these have a similar approach, they have
different domains of interest. For POSIX that domain is Open Systems Environments,' and for
the NIST/ECMA reference model it is the domain of PSE frameworks that support software
engineering. The domain of the PSESWG reference model encompasses both the POSIX and
NIST/ECMA domains. Because their approaches are so similar, PSESWG has made direct use
of both models as components of our reference model. This approach led to the realization that
since both efforts developed relatively independently of each other, there are numerous small
(but at times critical) inconsistencies between them that must be addressed. Members of NGCR
PSESWG have been active in helping the two communities to resolve these inconsistencies.

The domain of the PSESWG reference model also encompasses domains of interest that are not
addressed in the work of either POSIX or NIST ISEE. Numerous specifications and technical re-
ports, describing actual or proposed products, tools and standards, were examined. While some

1 Note that this use of the term "environment" is quite different from the sense in which it is used in the phrase
"software engineering environment."

NAWCADWAR-93023-70

VERSION 1.0 3

of these provided valuable ideas for the writing of this document, PSESWG's need for greater
breadth and scope required the development of a different model for a complete, populated PSE.
Thus the majority of the ideas presented in this model are original and are not derived from any
earlier efforts.

Finally, the approach is explicitly aimed at establishing a conceptual basis for an environment,
not at standardizing any particular environment product; our model must be viewed in this light.
This approach is in contrast to many current users of a given environment who, if confronted
with the question "What is your environment like?", would reply by listing the available tools.
The basic premise of the NGCR program is to standardize on interfaces rather than products.
Thus, while tools can help to understand the interfaces on which they depend, they are not
central to this reference model, and there is no part of the intended results of the PSESWG
activities that involves choosing a standard toolset.

1.4 Scope of the Model

The purpose of the reference model is to describe environments that support projects that
engineer, develop and maintain computer-based systems. There are many varieties of such
projects. They can comprise the work of several dozens of people or can be a solitary effort. They
can be geographically dispersed or concentrated. They also can be institutionally dispersed,
sharing people and facilities of several organizations, or concentrated within a single organization.
Projects can have widely divergent degrees of automated support. Lastly, the nature of projects
may be essentially exploratory, developmental, or maintenance, or may encompass all of these.
Yet common to projects of interest to PSESWG is a set of important characteristics:

@ Their province is the exploration, engineering, development, or enhancement of a computer-
based system.

* They require some mature form of management.

e There is computer-based support for the project.

* There is computer-based support for communication during the project's execution.

@ There are several stages within the life of the project, often encompassing various engi-
neering activities.

These characteristics do not uniquely apply to software engineering projects, but include projects
involving hardware and firmware, systems engineering, etc. These characteristics are also not
peculiar to Navy or to DoD projects, but are typical of engineering projects in general.

Although a project support environment can be either automated or manual, the scope of this
reference model is a computer-based support environment. This scope can be further articulated
by distinguishing between different aspects of the automation. For instance, various project
support capabilities alluded to above can be provided on PCs, on workstations, on mainframe

NAWCADWAR-93023-70

4

computers, or on networks involving these. The scope of this reference model encompasses
all these. To the greatest extent possible the concentration has been on capabilities that are
common to all, not applicable to only one.

1.5 Types of Project Support

Projects require many types of support. Examination of the processes that projects use provides
important information on the PSE support that may be required. The functions of projects that
can be supported by PSEs can be grouped within four major categories:

* technical engineering functions (e.g., system design, simulation)

e technical management functions (e.g., reuse management, configuration management)

e project management functions (e.g., resource scheduling, project tracking)

* support functions (e.g., editing, maintenance of the support facility)

While details about these categories might be debated,2 there is probable agreement that they
represent the types of support functions that projects may require. And given the extent and
complexity of this area, it is probably impossible to find any set of categories that will find uni-
versal agreement. The Working Group has therefore chosen a set of categories that will be most
useful as a means toward its principal goal, namely, selecting interface areas for standardization.

'For example, some might believe that the "management functions" extend beyond project budgctinig to snuh
accounting functions as payroll; others will disagree. Post-deployment logistics presents a more difficult example.
The purpose of this list is to convey the general scope; the services described in chapters 4 through 8 provide
more detail.

NAWCADWAR-93023-70

Chapter 2

DESCRIPTION OF THE MODEL

This chapter first establishes the basic premise of the reference model, then describes the model
itself, and lastly discusses several concepts central to an understanding of it.

The reference model is a conceptual description of the functionality provided by a project support
environment. This description is general and is bounded neither by a particular application
domain nor by any specific lifecycle paradigm for a development project. This is in contrast to
an actual implemented environment that is constructed of particular components (i.e., software
and hardware) and that typically does reflect a chosen lifecycle paradigm, at least implicitly.

The distinction between conceptual and actual is of fundamental importance. The conceptual
viewpoint that governs this reference model provides an abstract description of the functionality
expected in a PSE. An actual viewpoint would describe a particular realization of the conceptual
view in terms of a PSE architecture with specific tools and standards. There is a mutually
reflective relationship between the conceptual and the actual views, i.e., between this PSE
reference model and existing environments: one may either consider the model to be abstracted
from many environments or regard a particular environment as a realization of the model.

Figure 2.1 illustrates this distinction. The left-pointing arrow illustrates the activity of studying
several existing environments to derive information for the model. The right-pointing arrow
shows how a particular environment could be a realization of the model. One benefit of this
approach is that it provides a common means of describing environments (e.g., "How is SLCSE

Sabstraction

Conceptual a Actual

Model > Environment
realization

Figure 2.1: Conceptual and Actual Distinction

5

NAWCADWAR-93023-70

6

different from EAST?").' This further provides an ongoing validation of the model; it is a
necessary attribute that the reference model provides an accurate reflection of technology that
exists.

2.1 Key Concepts and Terms

There are several key concepts and terms used in the Reference Model. This section provides
an overview of them and their interrelationships. These terms are more fully described and
defined in Appendix A. These key terms are indicated below by italics. It should be noted
that some of these concepts are not amenable to simple definition, either because the term is
broadly applicable, forcing description rather than definition, or because the term currently
has conflicting meanings in the environments community. It is hoped that this section of the
Reference Model may help resolve some of this confusion.

An Environment is a collection of software and hardware2 components; there is typically some
degree of compatibility that renders these components harmonious. One can describe an envi-
ronment using the contrasting viewpoints of conceptual vs. actual; or in a slightly different way,
one can describe an environment in terms of the way it supports human activities.

When described from the conceptual point of view, an environment's capabilities are referred
to as Services, which are abstract descriptions of the work done. Some of these services are of
direct interest to an end-user (e.g. an engineer, manager, or secretary directly participating in
the execution of a project) while others comprise an underlying infrastructure, or Framework,
comprised of relatively fixed capabilities that support processes, objects, and user interfaces.

When described from the opposite, or actual view, i.e., when a realized environment is consid-
ered, the components that directly support an end-user are generally called Tools. Although no
single definition for "tool" will suffice, that of the IEEE Glossary3 is useful: a computer program
used to help develop, test, analyze, or maintain another computer program or its documentation.
As in the conceptual view, the components that comprise an actual infrastructure are referred
to as the Framework. The same term, framework, is thus used in both a conceptual and an
actual sense, and its precise meaning depends on the context.

Finally, when an Environment is considered from the vantage point of how it supports human
activities, then either the environment will provide a Scrvice to a hunian user or a human user
will perform some Task with the aid of the environment. For instance, one can speak of the task
of testing software, or of using a software testing service.

These different views of an environment result in subtle differences in the meanings of key terms.
In particular, there is a slightly different meaning for service when it is contrasted with tool and
when it is contrasted with task. In the first case, a tool is an actual realization of one or more

'Explanations of all acronyms are provided in Appendix 1).
2For the purposes of this document, the PSESWCG concent rates on thc software c3onponents of an environmnent.

3 IEEE Standard Glossary of Soft ,arc Engin'ering Termiinlogy, I EE St d 610.12- 19¶90.

NAWCADWAR-93023-70
VERSION 1.0 7

Conceptual Actual

(Machine) e
SERVICE TOOL

Capability .

(Human) TASK
Activity

Figure 2.2: Relationship between Service, Tool, and Task

conceptual services. While there is no strict correlation between tool and service (because one
tool may realize many services, or one service may be realized by many tools), there are relatively
straightforward correlations between tools' functionalities and service descriptions. In the second
case, a task and a service provide complementary views of the same activity. For instance, one
might consider that the environment provides some capability (e.g., an environment's testing
service); or one might consider that a human user performs some task using the environment
(e.g., the human activity of testing). Whichever view one takes, both refer to the same notion,
e.g., a human using a piece of software to test the output of an engineering process.

In brief, services are the capabilities of the environment, tasks make use of and provide context
for those capabilities, and tools are the actual executable software components. Figure 2.2
illustrates the distinction between these concepts. Service can be contrasted with Tool along an
axis of Conceptual vs. Actual, or it can be contrasted with Task along an axis of Capability vs.
Activity.

2.2 The Reference Model

The PSE reference model is a catalog of service descriptions spanning the functionality of a
populated environment. The service descriptions are grouped by several different categories,
including degrees of abstraction, granularity, or functionality. The highest-level division classifies
services either as end-user or framework services. The former includes services that directly
support the execution of a project; these are services that tend to be used by those who directly
participate in the execution of a project, e.g., services directly accessed by engineers, managers,
and secretaries. The latter services either pertain to users who facilitate, maintain, or improve
the operation of the computer system itself (e.g., a human user performing such tasks as tool
installation) or are used directly by other services in the environment. End-user services are
further subdivided into Technical Engineering, Technical Management, Project Management,
and Support services. The first three of these groups partition the execution of a project into
engineering, management, and a middle category that partakes of both. The fourth group,
Support services, is orthogonal to the other three, since it includes capabilities potentially used

NAWCADWAR-93023-70

8

Framework
Services

Technical Project
Management Management
Services services

Technical o..". Support
Engineering Services
Services N

Figure 2.3: An Illustration of Service Groups

by all other users, such as word processing, mail, and publication.

Figure 2.3 illustrates the logical relation of these service groups . Framework services form
a central core with a potential relationship to all other services in the environment. Support
services underlie the other end-user services. The remaining three groups, Technical Engineering,
Technical Management, and Project Management, surround the Framework services and make
use of the Support services. In addition, services from these three groups may have relationships
with each other.

It is not the intention that the boundaries of the parts of this drawing explicitly indicate inter-
faces, since this figure is drawn at the level of service groups, not of individual services. Thus, it
must be stressed that while a drawing such as this attempts to suggest in a very general manner
how the high-level service groups relate to each other, there is an express intention to avoid any
sort of architectural implication. The Reference Model is a conceptual, not an actual, model,
and no architectural choices are intended by this figure. To emphasize this point the same set
of service groups, with the same set of potential relationships, could also be illustrated by figure
2.4.

The key point is that the figures are illustrative only and do not in any way connote layering of

NAWCADWAR-93023-70

VERSION 1.0 9

Support ServicesJ

Project Technical Technical
Management Management Engineering
Services Services Services

[Framework Services j

Figure 2.4: Another Illustration of Service Groups

services, architectural decisions, or implementation choices for an actual environment.

2.2.1 Description of End-User Services

Each of the end-user service categories (Technical Engineering, Technical Management, Project
Management, and Support services) is further subdivided by engineering domain, user role, or
life-cycle phase.

Technical Engineering services focus on the technical aspects of project development. These
services are subdivided by specific engineering domains (e.g., Software Engineering). Within an
engineering domain the processes used in the life cycle of a project define a series of tasks, each
requiring services for its support. Thus, within the software engineering domain, tasks typically
include designing and coding, which require services such as compilation and testing.

Technical Management provides services that are closely related to engineering activities; these
services provide a managerial complement to engineering activities in the areas of configuration
management, reuse, and metrics.

Project Management services are relevant to the overall success of the enterprise. They include
such things as scheduling, planning, and tracking the overall progress of a project.

Support services focus on tasks and activities common among all users of a PSE, regardless
of the domain, role, or life-cycle phase in which the activity is taking place. They include a
group of common services for information processing, as well as publishing, user communication,
presentation, and administration services.

2.2.2 Description of Framework Services

The framework service categories include Operating System, Object Management, Process Man-
agement, Policy Enforcement, User Interface, Communication, Network, and User C(omniand
Interface services.

NAWCADWAR-93023-70

10

Service descriptions for five of these groups are abstracted from the reference model developed by
ECMA and modified by NIST in the "Reference Model for Frameworks of Software Engineering
Environments," NIST Special Publication Number 500-201, December 1991 [NIST]; the other
three are abstracted from the IEEE TCOS "Guide to Open Systems Environments" [POSIX].
In addition to the five groups referenced here, the NIST/ECMA Frameworks Reference Model
contains services related to Framework Administration/Configuration; these are included in the
present document in the chapter on Support services.

2.3 Discussion of the Model

The following sections discuss the conceptual basis of the model and provide a rationale for how
the service groupings were decided. A final section discusses how a target system is considered
in the Reference Model.

2.3.1 Conceptual Models vs. Actual Environments

Since the reference model is conceptual as opposed to actual, the service descriptions tend
neatly to partition the functionalities of a PSE. When an actual environment is examined,
however, these neat conceptual groupings are seldom found. Real software components span
various service groups, with many components considered to be end-user tools also providing
capabilities properly regarded by the Reference Model as framework services. The likelihood of
this functional overlap is the reason that a conceptual model is necessary: one of its principal
values is that it provides a common conceptual basis against which to examine many different
environment implementations. Figure 2.5 illustrates the distinction between conceptual service
descriptions, having no duplication of functionality, and a set of actual software components,
many of which may overlap in their functional capabilities. As the figure shows, tools may
duplicate other tools' functionality, and a tool often provides both framework and end-user
services.

Note that even if actual environments show this mixing of framework and end-user functionality,
it is nonetheless true that framework services tend to be a relatively fixed set of infrastructure
services found in most environments, regardless of domain or tool content.

2.3.2 Rationale for the Groupings in the Model

In the widest sense, all users of the computer system are ultimately participating in project
execution. However, the reference model distinguishes end-user services as those that are di-
rectly related to project execution. Using the example previously cited, i.e., tool installation
vs. engineering activities, installing a tool clearly can facilitate the eventual engineering pro-
cess. However, services specifically related to tool installation are conceptually different enough
from services that directly support high-level engineering activities that the Reference Model

NAWCADWAR-93023-70

VERSION 1.0 11

Conceptual Actual
Model Model

End-user servce l [erie oo]
Services Lo 2

Framework awoServices

End-user tools and
framework implementation

Figure 2.5: Conceptual Service Groups and Actual Software Components

considers the classification of tool installation appropriately as a framework service and not as
an end-user service.

There are other criteria by which services axe grouped in the Reference Model. Often a collection
of services provides the functionality needed to support a common resource. For example, there
is a large group of services in this reference model related to accessing data objects in a common
repository. These services are all considered part of the Object Management services group.
Since these services are related by creating, accessing, manipulating and using objects from a
repository, their classification as a single group allows for a better conceptual understanding of
the requirements imposed on any realization of these services and ultimately on any standards
that address these services.

Another motivation for grouping some services together might be the roles individuals take
in using them. Thus, the activities that go into designing and producing executable source
programs will use services that are grouped under the heading of Software Engineering. In
this case, the group is determined by the users of the service rather than the management of a
common resource.

The boundary between service groups, particularly the boundary between end-user and frame-
work services, is a dynamic one that changes over time. There is a general tendency for greater
functionality to be gradually assumed by the underlying framework. For instance, historically
most operating systems have included a directory structure and file system for data storage; a
relational database is only occasionally added to a basic operating system. In the future, how-
ever, relational database functionality may be part of every operating system. It is precisely this
growth of functionality that leads toward the notion of "framework," in contrast to the notion
of "operating system."

NAWCADWAR-93023-70

12

2.3.3 Place of the Target System in the Model

While the target system may be the same as the development system, there is no requirement
that this be so. The PSE reference model therefore differentiates between the services available
on the host system used in the development of computer-based projects and services on the
target system upon which the developed project will execute.

Within the NGCR program, some of the details of target system functionality are described
elsewhere. One source for these details is the "Operating Systems Standards Working Group
Reference Model," June, 1990 [OSSWG/RM]. Other services, in particular those involving the
development system's connection to the target system and the monitoring of the target system
by the development system, are part of the PSE reference model.

NAWCADWAR-93023-70

Chapter 3

NOTES ON READING THE
SERV ICE DESCRIPTIONS

The remainder of this document consists of descriptions of the services of a PSE. The descrip-
tions are grouped according to the division already noted, i.e., Technical Engineering, Technical
Management, Project Management, Support, and Framework services. Each service group is
prefaced with a general overview of the service group, followed by a detailed description of the
services. For consistency throughout the model, PSESWG has adopted the convention of the
NIST/ECMA Reference Model, by which a service is described through its dimensions:1

The term "dimensions" is used for the kinds of description the reference model
emphasizes with regard to the services. This is to stress different dimensions are
somewhat distinct (if not orthogonal) from one another. That is, if a feature in one
service has changed in one dimension, it should not be assumed that changes had to
be made to that part of the service in another dimension. Dimensions offer different
ways of looking at a whole service To provide descriptions of services from various
perspectives a set of dimensions is associated with each service in the RM.

The eight dimensions are:

Conceptual: the semantics (e.g., functionality) of a service without reference to either its
possible implementation or to its relation to other services.

Operations: a subset of the expected operational capabilities of an implementation that
realizes the service. This subset is not intended to be complete, but only to provide examples
of the typical operations of the service.

Rules: the set of rules that constrain the states the data may reach and the changes to states
that operations may make.

'NIST/ECMA, p. 12

13

NAWCADWAR-93023-70

14

Types: the possible types of data or data model used by an implementation of that service, in-
formation about those types (for example, metadata), as well as the data (for example, instances
of those types) used in an implementation.

External: how the implementation of the service is made available to be used, e.g., by other
services, by tools or application programs, or directly by users.

Internal: the place in which to discuss implementation issues such as whether the service
might be supplied by the underlying framework.

Relationships to other services: the ways in which implementations of one service might
interact with implementations of another service; this may include examples of typical relation-
ships, as well as separation of static and dynamic relationships between services.

Examples: particular examples that implement a service, such as existing standards, inter-
faces, products, etc.

These dimensions are purely a conceptual means to extract different facets of information about
a service in a consistent way. This information may not be apparent from a single detailed prose
narrative, hence the choice of using dimensions. The reference model does not prescribe that a
system described using the reference model must have every service, nor that every service must
be explained from all dimensions. Some dimensions may be more important than others when
dealing with particular services. Often, services or dimensions may not apply.

3.1 On the Relationships dimension

Throughout the Reference Model, relationships between services are usually described by such
words as: "This service may interact with the XXX service..." This wording has been chosen
for several reasons. First, the nature of the relationship may be of many types, including
dependency (mutual or otherwise), data sharing, or control. Since different implementations
of services might make different choices, the use of "interact" is a neutral way of indicating a
relationship without making an implementation choice.

Similarly, the existence of relationships between services is (or is nearly) an architect ural decision.
Since the Reference Model expressly avoids making irchitectural decisions, relationships between
services are listed only as suggestions and are in no ;vay intended to indicate implementation or
architectural decisions.

Finally, almost all of the end-user services of an environment will typically have some relationship
on implementations of the framework services, and especially on the object managenint system;
they will also typically have some relationship with the Support services described in Chapter
7. In general. such relationships are noted in the Reference Model only when they might be of
particular relevance to the service.

NAWCADWAR-93023-70

Chapter 4

TECHNICAL ENGINEERING
SERVICES

Technical Engineering services support activities related to the specification, design, implementa-
tion, and maintenance of systems. In addition to 'traditional' engineering domains, the reference
model also considers life-cycle processes to be an area for which an engineering discipline is ap-
propriate, and services related to that domain are included here as well. The following services
are defined in this chapter:

"* System Engineering Services

- System Requirements Engineering

- System Design and Allocation

- System Simulation and Modeling

- System Static Analysis

- System Testing

- System Integration

- System Re-engineering

- Host-Target Connection

- Target Monitoring
- Traceability

"* Software Engineering Services

- Software Requirements Engineering

- Software Design

- Software Simulation and Modeling

- Software Verification

- Software Generation

- Compilation

15

NAWCADWAR-93023-70

16

- Software Static Analysis

- Debugging

- Software Testing

- Software Build

- Software Reverse Engineering

- Software Re-engineering

- Software Traceability

Life-Cycle Process Engineering Services

- Process Definition

- Process Library

- Process Exchange

- Process Usage

There are many other engineering domains, e.g., mechanical, electrical, and manufacturing.
Although these are omitted in the present edition of the model, future revisions of the Reference
Model may be expanded to include them.

4.1 System Engineering Services

The System Engineering services support projects that engage in substantial development or
maintenance activities involving both hardware and software.1 These services complement those
in the specialized engineering domains (e.g., software engineering) by providing preparation for
consistency between those specializations and for integration of their results.

4.1.1 System Requirements Engineering Service

Conceptual: This service provides the capabilities to capture, model, analyze, represent, and
refine the system requirements that will ultimately be realized as some combination of software,
hardware, facilities, people, and data. This service creates and manipulates representations
of system requirements, which may include: system capabilities (such as design and related
manufacturing, test, and support capabilities), data elements, internal and external system
interfaces, system software and hardware configuration items that communicate with software
components, and system states and modes within which the specific system operates.

Operations: Examples of requirements engineering operations include:

'There are many parallels between services in this section and services in the Software Engineering section;
these parallels may indicate that the same conceptual service is actually common to the two engineering domains.
In the present version of the reference model, it was deemed preferable to include these apparent duplications.
In future revisions of the reference model, however, some of these services may be collapsed into descriptions of
conceptual services common to both System and Software Engineering.

NAWCADWAR-93023-70

VERSION 1.0 17

"* Elicit and capture system requirements

"* Create, modify, and delete system requirements representations

"* Model a system's requirements, including characteristics such as evolving interfaces, per-
formance, and evaluation of risk impact; risks may be based on such factors as changing
technology, supportability considerations, or financial risk

"* Check consistency of system requirements

Types: The types used to represent system requirements may take the form of a diagram,
textual description, table, icons, graphics, hologram, etc. The representation may be expressed
in terms of a modeling notation with explicit rules.

External: This service includes the forms (such as textual, graphical and interchange) in which
the service both accepts and provides representations of system requirements, their properties
and their interrelationships. The styles of interface (such as command language, query language,
message passing, procedure calling and graphical browsing) that the service provides to its
operations are another external aspect.

Internal: Checking the consistency of system requirements, both internally (within a set of
requirements) and externally (between sets of requirements), may include external constraints,
which may impact the implementation of this service. If the service supports simultaneous
alternative views of the same information, there may be complexities in the implementation
regarding the impact that changes to one representation have on the other representations in
order to keep the views of the same information consistent.

Relationships to other services: This service may interact with the Traceability service, and
also with the System Design, Software Design, and Software Requirements Engineering services.

4.1.2 System Design and Allocation Service

Conceptual: This service provides the capabilities to create an architectural design of a sys-
tem's components. System designs describe the interrelationships between system components,
including a partitioning of system functionality and constraints between hardware and software.
System designs are typically dependent on system requirements. Designs represent objects such
as hardware and software components, component invocations, invocation parameters, com-
ponent composition, data elements, internal and external interfaces, hardware and software
configuration items, integrated logistics support elements, and states and modes withill which
the specific hardware and software sub-components execute.

The results of the system design service include a definition of the hardware and software sub-
components that comprise a specific system component. Application of this service can also
result in automatic generation of specification documents and work products from source infor-
mation.

Operations: Examples of system design operations include:

NAWCADWAR-93023-70

18

"* Translate requirements into design elements

"* Validate consistency of requirements to design

"* Create, modify, and delete system design representation

"* Define and manage system interface definitions, including those to the support system and
their attributes (e.g., reliability, size, power requirements)

"* Allocate system component to hardware or software

Types: The types used to represent system designs may take the form of a diagram, textual
description, table, graphics, icon, hologram, etc. The representation may be expressed in terms
of a modeling notation with explicit rules.

Relationships to other services: Typically, design activities are based on requirements anal-
ysis, and this service and the System Requirements Engineering service may have several levels
of interrelatedness or may even be realized by a single tool or tool cluster. This service may
also interact with the System Integration, System Testing, Traceability, Software Requirements
Engineering, Software Design, Software Compilation, and Software Testing services.

4.1.3 System Simulation and Modeling Service

Conceptual: The ability to model a system concept in its entirety before implementation takes
place is an important service needed in many phases of project development. This modeling
may include both resources needed to create a product as well as the resources needed to
deploy, support, and maintain it after development. Project management activities such as
scheduling and estimation, as well as system design activities may need the ability to perform
tradeoff studies of alternative strategies. During requirements analysis it must be determined
if it is feasible to build, operate, and maintain the new product, and during design it must
be determined which alternative is most effective. Starting with a high-level description of the
component, the System Simulation and Modeling service creates a model of the component at
a lower cost and in less time, in order to perform a quick evaluation of the product. In order
to build the model quickly, functionality required of the full product may be sacrificed or the
model may execute with less than optimal performance. A design may be modeled to establish
such quantified information as predicted and demonstrated failure rates and repair times.

Besides modeling, the terms prototyping or simulation are often used for similar services. A
prototype usually has a structure that will be similar to the final product while a simulation is
a model where we are mostly interested in the results and not in the structure of the system
that produced it. Both terms, however, are often used interchangeably.

Operations: Examples of modeling operations include:

"* Build model from requirements

"* Execute model

NAWCADWAR-93023-70

VERSION 1.0 19

"* Compare design relative to required attributes (e.g., cost, performance, supportability)

"* Capture results of model

Internal: Simulation models are generally either continuous or discrete. A continuous simula-
tion is usually based upon some mathematical equation where output is produced based upon
the independent time variable. In a discrete simulation, a finite state design is usually employed,
and the system steps through execution based upon discrete 'ticks' of the clock.

Prototyping models usually have a structure that is representative of the feature in the final
product that is being studied.

Relationships to other services: This service may interact with Project Management services
and with the System Requirements Engineering and System Design and Allocation services.

Examples: Performance Oriented Design (POD) and Synthetic Environments for Requirements
and Concepts Evaluation and Synthesis (SERCES) are examples of system modeling tools.

4.1.4 System Static Analysis Service

Conceptual: The System Static Analysis Service provides for the static analysis of system
designs and components in order to determine attributes of the system. Information derived
from the service includes:

* Product characteristics, such as component size, function calls, and operations.

* Complexity characteristics, such as cyclomatic complexity, spanning measures, other con-
trol flow and data flow measures, and other relationships derived from product character-
istic measures.

* Cross reference lists and graphs, such as define/use graphs, call graphs, data flow graphs,
and structure charts.

Operations: Examples of System Static Analysis operations include:

"• Collect raw statistics from system representations

"* Compute complexity measures

"* Produce cross reference list

"* Graph cross reference list

External: This service (especially cross reference information) is often provided as part of
system generation or integration tools; however, it also can be provided by separate static
analysis tools.

Relationships to other services: This service may interact with the System Design service,
and the Software Static Analysis and Design services.

NAWCADWAR-93023-70

20

4.1.5 System Testing Service

Conceptual: This service supports testing of systems. The purpose of testing is to insure that
all specifications have been met and that systems are operationally effective and suitable for
intended use. Such testing may be intrusive (e.g., accomplished by instrumenting code or hard-
ware elements), non-intrusive (i.e., accomplished by running the system in normal operational
configurations or through the use of real-time non-intrusive instrumentation (RTNI) equipment),
destructive (e.g., for survivability or ruggedization), or non-destructive (for both intrusive and
non-intrusive tests).

Operations: Examples of System Testing operations include:

"* Generate system test cases

"* Generate test requirements matrix

"* Perform system test

"* Perform system regression test against all previous test cases

"* Analyze completeness of test coverage

"* Capture system test results

"* Validate system test results against anticipated results

"* Produce summary report of results

Relationships to other services: This service may interact with the System Requirements
Engineering, Traceability, Software Test, Configuration Management, and Risk Analysis services.
It may also interact with the Host-Target Connection and Target Monitoring services.

4.1.6 System Integration' Service

Conceptual: The product of an engineering process is often composed of a number of different
pieces, each developed separately. This may be a result of a fundamental difference in nature
of some of the pieces of a project (e.g., the hardware and software for an embedded real-time
application), a technical distinction between the pieces (e.g., the control software and user
interface software), or a pragmatic decision (e.g., to allow a group of people to work concurrently
on portions of a large system). In any case, it must be possible to combine those pieces into a
product. The resultant product must be identified as a new item of interest, and hence it can
be tracked as a significant object from that point on. If the pieces exist in multiple versions, the
correct version of each piece must be selected in creating the full product.

A description is required that defines which logical pieces make up a product and how those pieces
are related (e.g., chapters in a document). As some of the pieces may need to be transformed

NAWCADWAR-93023-70
VERSION 1.0 21

before they are combined, this description may contain details of how that transformation takes
place.

Operations: Examples of integration operations include:

"* Identify the components and incremental builds that make up a product

"* Build a product from its components

* Create product release

"* Audit product release

Types: Objects that comprise a product may be CSCIs, textual or graphical components of
documents, or technical data packages and parts lists. A product can consist of originated
("source" in its real meaning) objects as well as derived objects.

Internal: Frequently occurring transformations are often provided as an internal component of
an integration service. This helps to simplify the integration descriptions used and to automate
the building process.

Relationship to other services: This service may interact with the Configuration Manage-
ment service, since the pieces used in a product may be part of a new configuration. It may
interact with the Traceability service to determine which components need to be processed. It
may also interact with the System Design and the Software Build services.

4.1.7 System Re-engineering Service

Conceptual: The System Re-engineering service is required when a system's requirements
change. The changes may be related to functionality, performance, reliability, cost; to such fac-
tors as obsolescence, nonavailability of parts, changed manufacturing or logistics circumstances;
or to the need to take advantage of technological improvement and evolution. This service takes
as input an existing design and a new or modified set of requirements and produces a new
or modified design according to the changed requirements. The System Re-engineering service
encompasses hardware, software, manufacturing, and support elements of a system.

Operations: Examples of System Re-engineering operations include:

* Perform fault analysis and verification

@ Analyze impact of modified requirements on existing design and implementation

o Modify design representation

e Analyze impact of new design on existing system components

Relationships to other services: This service may be interact with the System Simulation
and Modeling service, the System Static Analysis service, the System Requirements Engineering
service, and the System Design and Allocation service.

NAWCADWAR-93023-70

22

4.1.8 Host-Target Connectian Service

Conceptual: The Host-Target Connection service is required to ensure the ability of a host
PSE to communicate with a target system for the purpose of software downloading, system test
or debug, and system monitoring.2 The minimum capability for this service is for two one-way
links. One is for the host PSE to be able to convey to the target such items as the loadable
or bootable software executable image or test and debug commands. The other permits the
target to convey to the host PSE the results of test or debug operations and target monitoring
information.

Operations: Examples of host-target connection operations include:

"* Establish system-to-system communications

"* Maintain, control, and relinquish host-target connection

External: The host-target communication can be realized as a direct or indirect link. A
direct link might consist of a cable or satellite connection. An indirect link might consist of an
agreement on a particular format for floppy disk or magnetic tape.

Relationships to other services: This service may interact with all other PSE services that
rely on the ability to communicate with a target system. These would include at least the
System Testing, Target Monitoring, and Software Debugging services.

Examples: A simple example of this service would be for a PSE to generate magnetic tape
cartridges in a form for which the target system has a compatible drive. Likewise, when the target
needs to convey information back to the host, it generates another magnetic tape cartridge. A
more sophisticated capability would use a network link directly to download information to the
target, dynamically interacting with it in real time.

4.1.9 Target Monitoring Service

Conceptual: The Target Monitoring service provides the ability of the host PSE to receive and
interpret specified execution and performance information from an operational target system.

Operations: Examples of monitoring operations include:

"* Specify target system monitoring information

"* Acquire and accumulate target system monitoring information

"* Correlate and analyze target system monitoring information
2It is assumed, for the purposes of NGCR, that the target systems are built using the other NGCR standards.

Eventually, that list of standards will include at least two levels of performance for local area networks, at least
two levels of performance for backplane busses, an operating system interface standard, a database management
system interface standard, and a graphics interface standards.

NAWCADWAR-93023-70

VERSION 1.0 23

e Report monitoring information

Types: These would include any types critical to the target system. These could include:
frequency or length of calls, missed deadlines, length of queues, CPU time used, dynamic paging
activity, number of requests, block sizes, fragmentation, and other types of data.

Relationships to other services: This service may interact with the Host-Target Connection
Service for the acquisition of the information reported by the target system.

4.1.10 Traceability Service

Conceptual: The Traceability service supports recording of relationships between artifacts
of the development process. These artifacts may be representations of requirements or designs,
software items, hardware, test items, etc. The relationships permit other services to perform such
operations as verifying existence, establishing dependencies, and similar operations whose aim
is establishing and maintaining factors of constraint. This service may be used in maintaining
consistency as well as performing change impact analysis.

The Traceability service generally imposes additional properties on the types of object defined
for the other development process services. Thus, this service is similar to the framework's
Object Management services, but is at a higher level of abstraction, since this service presumes
that additional semantic information is present in establishing the relationships than is present
in the OMS.

Environments may provide a traceability service automatically, wherein development process
activities inform the traceability service as derivations occur. More loosely coupled systems
may require user convention or intervention to record relationships, such as the use of naming
schemes that permit the deduction of relationships between artifacts. One common use of this
service is to establish that a system's requirements can be traced throughout other stages of the
lifecycle process.

Operations: Examples of traceability operations include:

* Create, update, and destroy relationships between two items

9 Query current status of relationship

* Query relationship history

o Navigate relationships and items

e Detect and report violations of traceability constraints

Rules: Relationships must point at existing items.

Internal: Fully automated trace recording will likely imply the sharing of schema and a data
repository between multiple development process activities.

NAWCADWAR-93023-70

24

Relationships to other services: This service may interact with most other engineering
services. It may also have an important relationship with the framework's Process Support
services and with the Lifecycle Process Engineering services.

Examples:

"* ORCA (Object-based Requirements Capture and Analysis).

"* RETRAC (REquirements TRACeability).

4.2 Software Engineering Services

The services in this category support the specification, implementation, debugging, and main-
tenance of software. 3

4.2.1 Software Requirements Engineering Service

Conceptual: This service provides the capabilities to capture, represent, analyze, and refine
those system requirements that are allocated to software components. This service creates and
manipulates representations of requirements. These may include: software capabilities, data
elements, internal and external software interfaces, system software and hardware configuration
items that communicate with software components, and system states and modes within which
the specific software executes.

Operations: Examples of software requirements engineering operations include:

* Elicit and capture software requirements

e Create, modify, and delete software requirements representations

e Check consistency of software requirements

Types: The types used to represent software requirements may take the form of a diagram,
textual description, physical artifact, graphical computer representation, hologram, etc. The
representation may be expressed in terms of a modeling notation with explicit rules.

External: External aspects of this service include the forms (such as textual, graphical and
interchange) in which the service both accepts and provides representations of software require-
ments, their properties and their interrelationships. The styles of interface (such as command

3There are many parallels between services in this section and services in the System Engineering section;
these parallels may indicate that the same conceptual service is actually common to the two engineering domains.
In the present version of the reference model, it was deemed preferable to include these apparent duplications.
In future revisions of the reference model, however, some of these services may be collapsed into descriptions of
conceptual services common to both System and Software Engineering.

NAWCADWAR-93023-70

VERSION 1.0 25

language, query language, message passing, procedure calling and graphical browsing) that the
service provides to its operations are another external aspect.

Relationships to other services: This service may interact with the System Requirements
Engineering and System Design services. It may also interact with the Software Traceability,
Software Design, Software Re-engineering, and Software Simulation and Modeling services.

Examples: OOATool and DCDS are examples of tools providing software requirements engi-
neering.

4.2.2 Software Design Service

Conceptual: This service provides the capability to create a design of the software components
of a system or subsystem. Software designs are typically dependent on a set of requirements; they
describe interrelationships of software components, including interfaces, invocation parameters,
data elements, and the states and modes within which the specific software sub-components exe-
cute. The outcome of the software design service includes definition of the software components
and subcomponents.

Operations: Examples of software design operations include:

* Translate requirements into design elements

* Create, modify, and delete software design representation

* Validate design to requirements

* Produce structure charts (or other design information) from design

• Evaluate design

Types: The types used to represent software designs may take the form of a diagram, textual
description, physical artifact, graphical computer representation, hologram, etc. The represen-
tation may be expressed in terms of a modeling notation with explicit rules.

External: The external dimension includes the forms (such as textual, graphical and inter-
change) in which the service both accepts and provides representations of software designs.
their properties and their interrelationships.

Relationships to other services: Typically, design activities are based on requirements anal-
ysis, and this service and the software requirements engineering service may have several levels
of interrelatedness or may even be realized by a single tool or tool cluster. This service may also
interact with the System Requirements Engineering and System Design services and with the
Compilation, Debugging, and Software Testing services.

This service may also interact with the Software Reverse Engineering and the Software Re-
engineering services, both of which have as goals the modification of an existing design into a
new design.

NAWCADWAR-93023-70

26

Examples:

IDE's Software through Pictures (StP), Teamwork, ObjectMaker, and the Hierarchical Object-
Oriented Design (HOOD) method and its associated design tools provide examples of this service.

4.2.3 Software Simulation and Modeling Service

Conceptual: The ability to model a component or software system before implementation is
an important service needed in many phases of project development and in many engineering
domains. Project management planning services like scheduling and estimation need the ability
to perform tradeoff studies of alternative strategies, during requirements engineering it must be
determined if it is feasible to build the new product, and during design it must be determined
which alternative is most effective. Starting with a high-level description of the component,
the Software Simulation and Modeling service creates a version of it that is less expensive than
the desired product and built in less time in order to perform a quick evaluation. In order to
build the model quickly, it either sacrifices functionality required of the full product, reduces
the capability of the product, or executes with less than optimal performance.

Besides modeling, the terms prototyping, emulation, or simulation are often used for similar
services. :. prototype usually has a software structure that will be similar to the final product.
An emulation tends to be relatively complete, in the sense of a rival, while a simulation is a
model where one is principally interested in the results and not in the structure of the software
that produced it. All three terms, however, are often used interchangeably.

Operations: Examples of Software Simulation and Modeling operations include:

"* Build model from requirements

"* Execute model

"* Capture results of model

Internal: Simulation models are generally continuous or discrete. A continuous simulation
is usually based upon some mathematical equation where output is produced based upon the
independent time variable. In a discrete simulation, a finite state design is usually employed,
and the system steps through execution based upon discrete 'ticks' of the clock.

Prototyping models usually have a software structure that is representative of the feature in the
final product that is being studied (e.g., a user interface design similar to the window structure
the system will execute in). Often a high level language with easy modeling capabilities but
slow execution characteristics is used to build a prototype (e.g., SetL, 4GLs).

Relationships to other services: This service may interact with the Scheduling and Risk
Analysis services, and with the Software Requirements Engineering, Software Design, and Soft-
ware Re-engineering services. The System Simulation and Modeling Service provides similar
functionality at the system level.

NAWCADWAR-93023-70

VERSION 1.0 27

Examples:

"* Simula, Simscript, SetL, and CPL (Common Prototyping Language) are example simula-
tion and prototyping languages for software systems.

"* Menu or screen simulators (DEMO program, TeleUse, Rapid/Use in IDE's StP) also pro-
vide examples of this service.

4.2.4 Software Verification Service

Conceptual: It has long been demonstrated that a posteriori testing of software is most effec-
tive in showing the presence of errors and not their absence. Software verification uses formal
mathematical methods to prove a priori that the software must execute according to its speci-
fications. While proving that software does indeed meet its specifications has been shown to be
an extremely hard problem, there are many critical applications where the needed reliability of
the software simply requires it.

Formal verification first requires that a formal specification of a program be generated and
then that a formal model exists that maps between the specification and the eventual design or
implementation language. Given these two descriptions, a mathematical proof is generated that
the written software and the specification are equivalent.

Operations: Examples of software verification operations include:

* Analyze specifications (for consistency to the formal model)

e Read source component (either source programming language or design language)

e Identify errors (between specifications and verified object)

* Produce summary report

Rules: Verification systems are based upon one of a few formal models:

"* Axiomatic models which extend the predicate calculus with programming language con-
structs.

"* Functional and denotational semantic models which assume that programs are miathemat-
ical functions with an input and output domain.

"* Algebraic models which formally define the interface between program coinipuents as
mathematical equations.

Relationships to other services: Verification may interact with Software Requirements En-
gineering, Software Design, Software Testing, and Software Debugging services.

NAWCADWAR-93023-70

28

Examples: VDM (Vienna Development Method), based upon denotational semantics, and Z,
based upon the axiomatic model, are used to show the equivalence between a specification and a
design. Affirm was a research system that used the algebraic modal to show equivalence between
a specification and a source program. Gypsy is a language that includes a verifier as part of its
system.

4.2.5 Software Generation Service

Conceptual: Software generation provides automatic and semi-automatic production of soft-
ware components using existing components or component templates.

The use of a Software Generation service is most frequently seen in well-defined application areas
such as language parser generation, database application generation, and user interface design
and production.

Operations: Examples of Software Generation operations include:

" Generate parser from a syntactic language description (e.g., a BNF representation of a
language grammar)

"* Generate script for the composition and interconnection of software components

"* Generate rule-based system from a set of rules

"* Generate user interface component for a software system

"* Generate schema for database

Relationships to other services: This service may interact with the Software Design and
Software Compilation services.

Examples:

e Parser generators (LEX, YACC) for producing compilers.

* 4th Generation Languages (4GLs) and application generators provided by many relational
database systems.

* IDL tools to generate the I/O for specific data formats.

e Application-specific language generators.

4.2.6 Compilation Service

Conceptual: The Compilation service provides support for the translation and linking of soft-
ware components written in various programming languages. Source code is created e-ither by

NAWCADWAR-93023-70

VERSION 1.0 29

means of text processing services, or by the automatic generation services described in the
Software Generation service.

The principal outputs from this service are executable programs supporting some target sys-
tem. Other products of this service may include metrics data and documentation aids such as
compilation listings.

Operations: Examples of software compilation operations include:

"* Find code and inheritance dependencies among a set of software components

"* Preprocess source code to produce modified source code

"* Apply macro expansions to source code

"* Translate a source program (e.g., Ada, COBOL, C, Pascal, Assembly language) into some
target object code language

"* Produce report on the translation; this may include source listings of various complexity,
including cross-reference data, compilation speeds, CPU usage, etc.

"* Link object code into executable images. When intended for use on a remote target, link
code into loadable/bootable images.

"* Incrementally update compiled system to reflect new changes.

Rules: The Compilation service enforces the rules of the programming languages that it pro-
cesses.

Types: Source code directly created by a human user is typically written in ASCII text. Source
code produced by source code generators may rely on internal data types known to the compiler.

Relationships to other services: This service may interact with the Software Design, Soft-
ware Generation, Debugging, Software Traceability, and Software Testing services. It may also
interact with the System Testing service and the Host-Target Connection service. It may also
interact with the Configuration Management, Project Management, and Lifecycle Process En-
gineering services.

Examples: Examples of compilation services include:

"• Compiler systems (including linkers) for standard languages (Ada, COBOL, C, Pascal.
etc.)

"* Unix's Lint preprocessor

NAWCADWAR-93023-70

30

4.2.7 Software Static Analysis Service

Conceptual: The Software Static Analysis service provides for the static analysis, or source
code analysis, of software components in order to determine structure within the component.
Information derived from the service includes:

e Product characteristics, such as component size, number of statements, statement types,
variables, function calls, operations, operands, data types and other programming laniguage-
specific data.

* Complexity characteristics, such as cyclomatic complexity, software science measures,
spanning measures, other control flow and data flow measures, and other relationships
derived from product characteristic measures.

9 Cross reference lists and graphs, such as define/use graphs of variables, call graphs of
functions and other subprograms, data flow graphs, structure charts, and variable and
type definition lists.

@ Characteristics of the code, such as: testability, completeness or consistency, reachability,
reusability, and maintainability.

Complexity measurements are based upon various underlying graph models of the source pro-
gram. Even simple measures, like lines of code, have different interpretations, so comparisons
between two tools providing this service must be carefully analyzed before such comparisons are
used.

Operations: Examples of Software Static Analysis operations include:

"* Collect raw statistics from component

"* Compute complexity measures from component

"* Produce and graphically represent cross reference list

Internal: Data is often collected from internally parsed forms of the source program.

External: This service (especially cross reference information) is often provided as part of
compilation tools; however, it also can be provided by a separate static analysis tool.

Relationships to other services: TPhis service is often provided as part of the Software
Compilation service. This service m:, e'ý , •nteract with the Software Design service, the Metrics
service, and with the System StatiP A;i i.,•iis service.

Examples: NASA's SAP program ,,i analyzing Fortran code is an example of this service.

NAWCADWAR-93023-70

VERSION 1.0 31

4.2.8 Debugging Service

Conceptual: The Debugging service is for the location and repair of software errors in in-
dividual software components by controlled or monitored execution of the code. Unlike the
the Software Testing service, which determines that an error is present, the Debugging service
supports tracking down errors and replacing code.

Operations: Examples of Debugging operations include:

"* Instrument source programs by inserting breakpoints, instruction traps, printing out data
values, and modifying source text

"* Execute programs incrementally

"* Monitor and save execution output

"* Analyze properties of programs and their current data values

Relationships to other services: This service may interact with the Text Processing ser-
vice, with the various Software Engineering services such as the Software Design, Compilation,
Software Test, and Software Generation services, and with the Host-Target Connection service.

Examples: The Unix dbx debugger is an example of this service.

4.2.9 Software Testing Service

Conceptual: This service supports the testing of software systems. Testing is performed on
individual software components (unit testing), on collections of software components (integration
testing), and on complete software systems (system testing).

A particular situation in which software testing occurs is when the target operating environment
for an application is different from the environment on which the application is being developed.
In this case, the system's Host-Target Connection and Target Monitoring services will be required
for software testing.

Operations: Examples of software testing operations include:

" Generate test cases and test harness. Depe ring upon the testing method used (e.g., path
testing, functional testing, statement coverage, boundary value testing), capabilities may
be implemented to analyze source programs and generate such test values.

" Instrument source programs to output test results, depending upon testing method used.
For example, each path (or branch or statement) can output data showing that each path
was executed.

"a Perform tests for resource utilization, reliability, and path and domain selection

NAWCADWAR-93023-70

32

a Perform timing analysis and real-time analysis (missed deadlines, deadlock, race)

* Perform mutation analysis

e Perform regression testing of all previons test cases on the tested object.

* Validate test results with expected results

Relationships to other services: The System Testing Service may be needed to test systems
involving both hardware and software components. The Debugging service may be used to
repair errors found by testing. The Host-Target Connection service may be used to communicate
testing data with a target system different from the host system being used for development.
This service may also interact with the Compilation service, the Configuration Management
service, the Build service, and the Lifecycle Process Engineering services. Formal proofs of
correctness are handled by the Software Verification service.

Examples: Software TestWorks is an example of this service.

4.2.10 Software Build Service

Conceptual: The product of software development is often composed of a number of compo-
nents, each developed separately. Size of resulting product, number of personnel assigned to
development, schedule, and development method (e.g., top down design, structured design, ob-
ject oriented design) all influence the development of a software product into a set of separately
compilable components. In any case, it must be possible to combine those pieces into a product,
often called a release. The resultant product release must be identified as a new item of interest,
and hence it can be tracked as a significant object from that point on. If the components exist
in multiple versions, the correct version of each must be selected in creating a full release.

In the building of a release it is often possible to perform some transformations to the components
automatically before they are combined. For example, the source code is typically converted to
object code via compilation before the object code is combined through linking.

A description is required that defines which logical pieces make up a product and how those
pieces are related (e.g., phases in a multi-phase program). As some of the pieces may need
to be transformed before they are combined, this description may contain details of how that
transformation takes place. Specific data, such as default file names, may be added to the
product at this time.

The product release can be compared with the build description that was used to derive it. A
list of the actual versions of components used in that build should be recorded, together with
the operations that were used in transforming the components and deriving the release.

The resultant product release may also be versionable.

Operations: Examples of Build operations include:

e Define the relationships among the components that make up the product

NAWCADWAR-93023-70

VERSION 1.0 33

e Transform the components that make up the product

* Build a product from its components

e Create product release

9 Audit product release

Types: Objects that comprise a release may be source code, binary code, and textual or
graphical components of documents. A release can consist of originated ("source" in its real
meaning) objects as well as derived objects.

Internal: Frequently occurring transformations are often provided as an internal component of
the Software Build service. This helps to simplify the build descriptions used and to automate the
building process. Components used by the Software Build service may themselves be collections
of objects in an Object Management System.

Relationship to other services: This service may interact with the Configuration Manage-
ment service, since the pieces used in a build may produce a configuration. It may also use the
Software Traceability service to determine which components need to be processed. It may also
interact with the System Testing and System Integration services.

Examples: The Unix make tool is a well known example for software construction.

4.2.11 Software Reverse Engineering Service

Conceptual: The Software Reverse Engineering service provides the capabilities to capture
design information from source or object code and produce structure charts, call graphs, and
other design documentation of that information. The goal is to generate a design that represents
an existing program which may then be re-engineered (using the Software Re-engineering service)
to provide new functionality, perhaps retargeted to execute on a new hardware platform or
translated into another source programming language.

It is sometimes necessary to also reverse engineer source code from executable object code.
Disassemblers are tools that produce assembly language from such object code, and decompilers
produce source programs from such object code.

Decompiling object code that was originally compiled in one language into another is an ex-
tremely difficult operation. It is often better to reverse engineer the object code and then use
the Software Re-engineering service to produce the code in the new language.

Operations: Examples of Software Reverse Engineering operations include:

* Generate design from source code

* Generate source program from object code

NAWCADWAR-93023-70

34

Rules: Abstracting and partitioning the design will require specific rules and methods. These
rules will have a significant effect on the usefulness of the design in future re-engineering efforts.

Types: This service produces a new design and uses as input either a source program or an
object program. The types of design for reverse engineering are the same as the types used in
the Software Design service, such as Data Flow diagrams and ER diagrams.

External: Software code and its language definition are the primary input interfaces to this
service. Standard output formats (e.g., the Common Data Interchange Format) are required for
sharing a design with other services in the environment

Internal: The most difficult problem in this service is the definition of the boundary of the
existing software to be reverse engineered. Existing systems are typically 50ksloc to 500ksloc
before a natural boundary is encountered. Current reverse engineering techniques would require
extensive processing to handle this amount of code, similar to what it might take to compile it.
This situation implies partitioning of the code space and further implies a partial design as a
result.

The internal format of the code and design items is usually a complex data structure. It is not
required to be sharable with other services.

Relationships to other services: The Software Compilation service may be used to translate
a source program into another source programming language. The Software Re-engineering
service may be used to modify the reverse-engineered design. The Software Static Analysis
service may be used to produce some of the design information, such as structure charts and
call graphs. This service may also interact with the Software Design service.

4.2.12 Software Re-engineering Service

Conceptual: The Software Re-engineering service is used when software requirements change.
This service takes as input an existing design and a new or modified set of requirements and
produces a new or modified design according to the changed requirements. The service may
also check that the new set of requirements is consistent with the existing system and may
determine the impact of the altered design on the existing set of components. Such concepts as
altered functionality, modified performance, and new capacities may also be evaluated. Use of
this service may also be appropriate when source code is deemed in need of restructuring for
improved maintainability. It may also be used when code is to be translated from one notation
into another.

Operations: Examples of Software Re-engineering operations include:

"* Revise or restructure existing code

"* Perform impact analysis of new design on existing software components

"e Translate from one notation into another (e.g., a COBOL-to-Ada translator)

NAWCADWAR-93023-70

VERSION 1.0 35

Types: The input to this service is a design, an altered set of requirements, and possibly a
set of source code components. The output will be a design. The format of a design may be a
diagram, textual description, physical artifact, graphical representation, hologram, etc.

Relationships to other services: This service may interact with the Software Design service
to perform some of the design activities associated with re-engineering. It may also interact
with the Software Requirements Engineering, Software Simulation and Modeling, and System
Re-engineering services.

4.2.13 Software Traceability Service

Conceptual: The Software Traceability service supports recording of relationships between
artifacts of the development process. These artifacts may be representations of requirements
or designs, code items, test items, etc. The relationships permit other services to perform
such operations as verify existence, establish dependencies, and similar operations whose aim is
establishing factors of constraint.

The Software Traceability service generally imposes additional properties on the types of object
defined for the other development process services. Thus, this service is similar to the frame-
work's Object Management services, but is at a higher level of abstraction, since this service
presumes that additional semantic information is present in establishing the relationships than
is present in the OMS.

Environments may provide a traceability service automatically, wherein development process
activities inform the traceability service as derivations occur. More loosely coupled environ ments
may require user convention or intervention to record relationships, such as the use of naming
schemes that permit the deduction of relationships between artifacts. One common use of this
service is to establish that requirements can be traced throughout other stages of the lifecycle
process.

Operations: Examples of traceability operations include:

"* Create, update, and destroy relationships between two items

"* Query current status of relationships

"* Query relationship history

"* Navigate relationships and items

Rules: Relationships must point at existing items.

Internal: Fully automated trace recording will likely imply the sharing of schema and a data
repository between multiple development process activities.

Relationships to other services: This! service may interact with many process-related ser-
vices, both at the Lifecycle Process Engineering level as well as at the framework's Process

NAWCADWAR-93023-70

36

Support level. It may also interact with the System Traceability service. It may also interact
with the Software Requirements Engineering and Software Design services.

Examples:

"* ORCA (Object-based Requirements Capture and Analysis).

"* RETRAC (REquirements TRACeability).

4.3 Life-Cycle Process Engineering Services

The Life-Cycle Process Engineering services support projects in achieving discipline, control,
and clear understanding in their life-cycle development processes and individual process steps.
The activities of the role of Process Engineer are sometimes shared by various management and
technical roles on a project and are sometimes performed by a distinct role (Process Engineer).
The services in this section distinguish process-driven (or -managed, -sensitive, -centered, or
-controlled) PSEs from collections of project tools. Life-Cycle Process Engineering services
include Process Definition, Process Library, Process Exchange, and Process Usage.

The Life-Cycle Process Engineering services differ from the framework's process management
services in several ways. At the framework level, the process management services produce and
manipulate the basic data needed to define processes. These include: definition of pre- and post-
conditions for enactment of processes; definition of project data needed for process enactment;
specification of relevant events; and creation of both the basic process elements that define
the life-cycle processes and the basic primitives to enact processes. At the end-user level, the
Life-Cycle Process Engineering services described in this section use the framework's process
management services to define the relationships among the various services in the PSE and
various roles users take in developing a product in order to implement a process for achieving
that development.

4.3.1 Process Definition Service

Conceptual: This service provides the capabilities for projects to create, maintain, tailor,
adapt, and validate definitions of processes in formal, semiformal, and informal forms. This
is a comprehensive service that provides for process definition the analogy of a wide range of
systems or software development services, from requirements activities through architecture,
design, instrumentation, and verification activities.

A process definition prescribes the interaction between process participants (managers, engi-
neers, etc.), technology (framework services, tools, etc.), and the methods, organizational poli-
cies, and procedures used to create the interim and final products that result from the execution
of the process.

The features of a process definition notation can lead to the automation of, guidance for, control

NAWCADWAR-93023-70

VERSION 1.0 37

over, and enactment of the defined process. The process mechanism will be driven by formal
detailed specifications of the process that include definitions of the triggers, activities, work
products, completion criteria, and other elements of the process (e.g., data schemata for project
databases).

Operations: Examples of process definition operations include:

* Analyze process requirements, including domain-specific analysis and application-specific
analysis

e Instantiate, compose, decompose, tailor, and modularize process definitions

* Simulate, model, and validate process definitions

Relationships to other services: This service may interact with the Process Library and
Process Exchange services. It may also interact with the System Traceability and Software
Traceability services.

Examples: Existing notations and languages for representing processes include:

"* Structured Analysis and Design Technique (SADT), ETVX, STATEMATE, data flow di-
agrams, state transition charts, Petri nets, HFSP, Work-flow

"* Marvel, GRAPPLE, MVO-L, APPL/A

"* Action diagrams, HIPO, PMDB

4.3.2 Process Library Service

Conceptual: The Process Library service supports reuse capabilities for processes, analogous
to software reuse. The process reuse concept is that life-cycle processes need not always be
defined from scratch and that previous instances of process assets may be made available in
libraries that may be national, organizational, or local in scope and that may be interconnected
by networks. Process assets may range from complete life-cycle process definitions to individual
process steps. Process assets may also be objects that can be versioned.

Operations: Examples of process library operations include:

"* Create, update, and delete process assets

"* Certify, measure, arid manage process assets

Relationships to other services: This service may interact with the Process Definition and
Process Exchange services. It may also interact with the System Traceability and Software
Traceability services.

NAWCADWAR-93023-70

38

Examples: The Process Asset Library (PAL) currently under development at the SEI will
provide a library of process assets and will involve infrastructure capabilities (e.g., guidelines,
library access mechanisms). The PAL will be a national library available through software
repository services, but it is also designed to be retrieved and instantiated for organization- or
projects-specific purposes.

4.3.3 Process Exchange Service

Conceptual: The Process Exchange service supports interchange of process definitions between
projects and between PSEs. It deals with transformations between different representations,
integration of heterogeneous representations, and interchange formats for process assets. This
service is principally intended for representations that are machine processable, that can be
electronically transmitted between environments, and that embody formal syntax and semantics.

Operations: Examples of Process Exchange operations include:

"* Encode and decode process metamodels

"* Encode and decode process language syntax

"* Transfer process definitions (output, export, import)

"* Manage a "foreign language" interface for process exchange

Relationships to other services This service may operate in conjunction with the Process
Definition or Process Library services and may interact with the Framework's Network and Data
Interchange services.

4.3.4 Process Usage Service

Conceptual: The Process Usage service supports the carrying out, enactment, or execution
in a PSE of a project's defined and installed process. Installed project processes are typically
carried out by a combination of manual human activities and PSE automated capabilities; hence,
both humans and machines may serve as "enactment agents." The scope of this service includes
capabilities for:

"* users' selection, guidance, and control of process steps

"* navigational and help facilities for users to query the installed process for information on
succeeding actions

"* varying the rigidity of enforcement of policies and constraints

"* process metrics specification, collection, and reporting

NAWCADWAR-93023-70

VERSION 1.0 39

* interactions of process definitions, simulations, and high-level representations with PSE
data management

Operations: Examples of process usage operations include:

* Manage help and guidance facility for process users

9 Query and report on process utilization and status

9 Manage analysis and decision aids for users

Relationships to other services: This service may interact with the Process Definition service
and the Process Library service. It may also interact with the System Traceability and Software
Traceability services.

Examples: Emerging PSEs with process enactment support include ProSLCSE, EAST, and
Cohesion.

NAWCADWAR-93023-70

Chapter 5

TECHNICAL MANAGEMENT
SERVICES

The services in this chapter fall into a middle category that partakes of both Technical Engi-
neering and Project Management. These services pertain to activities that are often equally
shared by engineers and managers; the operations of these services do not clearly fall into one
or the other category.

This chapter describes the following services:

e Configuration Management service

o Change Management service

* Reuse Management service

* Metrics service

5.1 Configuration Management Service

Conceptual: The goal of configuration management is to identify, document, and control
the functional and physical characteristics of configuration items to ensure traceability and
reproducibility of a project's end products. This involves controlling, recording, and auditing
the baseline and changes (pending or made) to the components of these end products. In the
context of a PSE, an end product could be any of a wide range of items, including software,
hardware, or a manufacturing process. A configuration item may be an aggregation of hardware,
firmware, or software, or any of their discrete portions that satisfy an end user function. An item
required for logistic support and designated for separate procurement may be a configuration
item. Examples of the end products or configuration items to be managed include:

* a computer program (e.g., operating system or application program)

40

NAWCADWAR-93023-70

VERSION 1.0 41

"* an integrated micro circuit device (e.g., ASIC, FPLA, gate array, or hybrid)

"* a board or circuit card assembly (e.g., graphics engine, microprocessor, signal processor,
memory, or local area network)

" an equipment item that may be comprised of the above items (e.g., mini- or microcomputer,
workstation, or network bridge)

" a system that is a collection all the above mentioned items that when interconnected
support a specific domain (e.g., command and control system, missile guidance system, or
jet propulsion system) or that is the evolving developmental support environment used to
generate, test, and maintain the product.

This service provides the management required to maintain a product's many constituent pieces,
including requirements statements, specifications, designs, drawings, CAD/CAM files, source
code files, test documentation, logistic documentation, baseline definitions, and end-user docu-
mentation. This service supports identification and management of interrelationships between
system components, any of which may themselves be composite objects. For various reasons a
component with the same logical function may have several (sometimes alternative) implemen-
tations. This may be the result of fixes to errors, different operating requirements, and variety
of interfacing requirements.

Operations: Examples of Configuration Management operations include:

"* Create a new configuration

"* Modify a configuration

"* Recover an older configuration

"* Delete a configuration

Internal: Each version of a configuration will have a unique identifier. The external names used
for configurations may be different from internal identifiers used for consistency and tracking.
Hence, external names may be changed, or multiple names may be defined for the same internally
identified configuration.

For clarity and control, a configuration may be identified by identification number, release date,
or by means of descriptive documents such as manuals.

Relationships between configurations may be through a naming convention, held as relationships
between nodes in a version graph, or in some other form.

Rules: There are dependency rules that govern the deletion of a configuration.

Relationships to other services: This service may interact strongly with the framework's
Version service, as well as the Access Control and Concurrency Control services.

NAWCADWAR-93023-70

42

5.2 Change Management Service

Conceptual: The Change Management service supports the creation, evaluation, tracking
of change requests generated in response to errors, omissions, or required enhancements to a
product. This servicc provides support for the resolution of a change request in terms of any
decisions, task assignments, and product changes.

Change requests axe evaluated for their criticality and benefit to provide an understanding of the
potential impact if they axe not addressed. An estimate of the resources required to carry out
the change request may also be provided. Such decisions often involve complex human activities
such as review boards or change control boards.

Based on the evaluation of a change request, one or more change orders may be created for it.
Typically information recorded with a change order includes the date of the change order and
the identifier of the change request initiating the order.

When a product is in use, new releases of the product will need to include changes made in
response to particular change orders.

Operations: Examples of change management operations include:

"* Create a change request in response to a reported error, omission, or required update

"* Evaluate, classify, and retain historical record of a change request

"* Create a change order for a change request

"* Generate a report or document; this may include:

- change request status

- change order status

- audit trails of changes to a product component

Internal: A way to uniquely identify each change order is required. This allows the progress
of the change order to be tracked. A statu3 indicator allows new, in progress, and completed
change orders to be distinguished. A priority level helps users to determine the importance (or
otherwise) of non-completed change orders.

Relationships to other services: This service may interact with the Configuration Manage-
ment service.

Examples: Netherworld and ChangeVision provide examples of this service.

5.3 Reuse Management Service

Conceptual: The Reuse Management service supports the storage, inspection, and reuse of

NAWCADWAR-93023-70

VERSION 1.0 43

assets related to many stages of engineering processes. These assets include such artifacts as
requirements, designs, software components, test cases and documents.

There are three elements of Reuse Management: (1) storage, (2) indexing and classification,
and (3) browsing and retrieval. The storage facility in which the assets are kept is commonly
referred to as a repository or library. Indexing and classification are done through one of several
competing strategies for reusable assets, such as "faceted" and "knowledge-based." Browsing
and retrieval are related to the actual mechanism by which the Reuse service is provided to
users.

Although management of a reuse repository may occur in a local sense, a useful reuse repository
will likely be a virtual construct, with reuse operations taking place throughout a distributed,
heterogeneous network of actual repositories. Any reuse management operations that occur in
such a larger context are necessarily bound by constraints external to an individual PSE.

Operations: Examples of reuse management operations include:

"* Deposit, acquire, or submit asset into the repository

"* Catalog, register, classify, accept, or index the asset

"* Search or browse the repository

"* Browse, examine, or extract the asset

"* Register the user, extractor, or submitter

"* Report problem with or use of an asset

Rules: The Repository administration must define the policies and rules with regard to all the
operations, such as: who may extract an asset; the criteria for asset deposit; and the policies for
charging and liability. The Reuse Management service must support and enforce these policies
and rules.

The indexing strategy for browsing (e.g., faceted or knowledge-based) may greatly affect the
management and user view of the assets.

Types: The primary unit of concern for the Reuse Management service is the asset. An asset
is composed of elements linked together to form a reusable entity. The elements of an asset are
themselves typed, such as Ada code, tagged document, or executable binary.

External: The external interface to the Reuse Management service is similar to a database sys-
tem providing search and retrieval services. It is usually managed by an organization dedicated
to providing reusable assets to a broad set of customers. The formats of the reusable assets are
defined by their types.

Internal: The implementation of the Reuse Management service must provide reasonable per-
formance and capacity. The relationship between the local repository and the external repository
(connectivity and networks) must also be considered.

NAWCADWAR-93023-70

44

A common implementation model is the client-server model. In this model, the server can
be located inside or external to the PSE. The client provides the user interface to the reuse
operations.

Relationships to other services: The Reuse Management service may interact with many
of the Software Engineering services, in particular with the Software Design service.

Examples (storage facilities): The Asset Source for Software Engineering Technology (AS-
SET), Reusable Ada Packages for Information System Development (RAPID), and Central
Archive for Reusable Defense Software (CARDS) are examples of storage facilities for reusable
assets. InQuisiX and the Reuse Library Framework (RLF) are examples of classification and
retrieval mechanisms.

5.4 Metrics Service

Conceptual: The ability to manage project development in a PSE depends upon the collection
and understanding of quantitative data. While primitive data collection facilities are provided
by the framework metrication service, it is the organization of that data into information that
provides for its usefulness in a PSE.

Data is generally organized into three classes, of which the first and third class are typically the
output of the System or Software Static Analysis services.

* Resource data provides information about product characteristics, such as number of com-
ponents, size, and various static analysis measures.

9 Performance data provides information about time-dependent processes, such as computer
usage costs, error reports and personnel time charges.

* Complexity data provides information about the structure of the development project,
both static analysis measures of the source documents and dynamic measures (e.g., of the
executing program).

This data must then be transformed and used by various models. Various reliability models, often
derived from hardware reliability theory, can be used to predict errors. Resource models depend
upon various regression models, and various complexity models are based upon information
theory, entropy or other finite state processes. These models are then used by other services,
particularly the various Project Management services.

Operations: Examples of metrics operations include:

"* Insert and delete data from data set

"* Pick appropriate model for given data set

"* Compare data set to predicted model

NAWCADWAR-93023-70

VERSION 1.0 45

"* Compute standard error and deviation in data set

"* Graph data set

"* Predict next point(s) in data set

Rules: The underlying model usually represents some formal mathematical property or equa-
tion.

Types: Data usually represents: product characteristics (e.g., size), process characteristics (e.g.,
errors), or structure (e.g., software science or cyclomatic complexity measures for a module).

Relationships to other services: The raw data of this service may be provided by the
Metrication service and by the Software Static Analysis service. The models produced by this
service may be used by the various Project Management services.

Examples:

"* COCOMO cost estimation model

"* Software science or cyclomatic complexity structure models

NAWCADWAR-93023-70

Chapter 6

PROJECT MANAGEMENT
SERVICES

The services in this chapter support these activities related to planning and executing a project.
Project planning is the activity by which efforts of all personnel responsible for a project are
coordinated and integrated. Coordination and integration occur through a comprehensive plan
for fufilling the project's need in a timely manner and at a reasonable cost. Project planning
takes place throughout the life of a project, from the project inception to completion. Typically,
one of the first steps in a project involves assessing customer needs, examination of strategies
to meet these needs, and discussion of the implications and effects of such strategies. A plan for
producing a proposal may also be necessary.

A project may be carried out by a number of cooperating or subcontracting organizations. If this
is the case, planning is necessary to manage the request for and selection of those organizations.
Following project initiation (e.g., contract award) detailed planning of the project activities will
be necessary, together with ongoing monitoring and re-planning of the project to ensure its
continued progress.

This chapter describes the following services:

"* Scheduling service

"* Estimating service

"* Risk Analysis service

"* Tracking service

6.1 Scheduling Service

Conceptual: The Scheduling service provides operations that permit handling of data according
to a set of chronological constraints relevant to a project (i.e., describing the sequence of work

46

NAWCADWAR-93023-70

VERSION 1.0 47

and identifying significant task interdependencies). These include start and finish times for the
project (as well as all component parts of the project). This service will support creation of
structures such as a Work Breakdown Structure (WBS), the most common means for planning
and scheduling a project.

Operations Examples of scheduling operations include:

* Generate key project events

e Quantify inputs and outputs for work activities

9 Compute event lead times (from manpower and cost models)

e Calculate start and finish dates

* Analyze critical path

9 Generate part or all of the WBS in a database

e Register assignment of work responsibilities to individuals

* Modify work breakdown structure based on actual vs. scheduled progress

Rules:

"* Project schedules may not have cycles or loops.

"* Start and end dates for all work activities must be not be contradictory (e.g., no activity
can be scheduled to complete before it begins).

"* Individual work assignments can constrain the schedule.

Types: A work schedule may be created as a graph with nodes being individual activities
and the edges being constraints that one activity has on another. Such graphs are commonly
nested, with a node on a higher-level graph representing entire lower-level subgraphs. The data
structure for this service may or may not use such a representation, but at least some equivalent
for it will probably be necessary.

Internal: Creating and modifying the WBS may be implemented through a 'Work Breakdown
Structure editor' or an expert system. Such tools will have built-in knowledge of the normal
components of a WBS, such as start/stop dates, no cycles, etc.

Relationships to other services: This service may interact with the Life-Cycle Process
Engineering services. It may also interact with the Risk Analysis and Tracking services.

Examples: Examples of this service are TimeLine and MacProject.

NAWCADWAR-93023-70

48

6.2 Estimation Service

Conceptual: The Estimation service supports quantification, analysis, and prediction of project
cost and resource needs. These include estimates for the size of a project, labor, equipment,
facilities costs, and cost of computer resources allocated throughout the project lifecycle. Esti-
mates may need to factor in the concept of multiple activities assigned to the same entity. This
is more likely to concern a person being assigned two or more parallel jobs, although the same
is possible for hardware allocations as well.

Operations: Examples of estimation operations include:

* Create cost, size, and resource estimates for product development, production, installation,
operation, and support

* Generate estimates for variable parameters such as workload mixes or for differing design

characteristics (e.g., safety, standardization, maintainability)

* Produce impact analyses based on alterations to variable parameters

* Perform sensitivity analysis on variable parameters

* Modify cost and size estimates and resource allocations

Internal: The principal component of an Estimation service could be an expert system. An
implementation of this service may also choose that estimates from one area (e.g., size estimates)
can constrain estimates in another area (e.g., cost).

Relationships to other services: This service may interact with the Numeric Processing
service through the use of spreadsheets, etc. It may also interact with the Tracking service and
with the Metrics services.

Examples:

* Tools that implement the Constructive Cost Model (COCOMO) estimation model provide
examples of this service.

6.3 Risk Analysis Service

Conceptual: The Risk Analysis service supports those planning activities that consider ele-
ments related to the success or failure of a project. Tracking of items such as expected resource
usage (e.g., productivity, reliability errors) versus actual usage allows for predictions of total
system needs. This service also includes calculation of various probabilities, such as for budget
overrun and technological failure, and such commonly used indices for success as the Mean Time
Between Failures (MTBF) of a system or a system module.

Operations: Examples of risk analysis operations include:

NAWCADWAR-93023-70
VERSION 1.0 49

"* Perform trade-off analyses based on differing parameters for resource allocation and schedul-
ing data

"* Produce cost, schedule, and performance risk statistics and analyses

"* Create decision trees, alternative and payoff matrices

"* Calculate probabilities and generate reports for various allocation strategies

Relationship to other services: The Risk Analysis service may interact with the System
Testing service, as well as with the Scheduling, Estimation, Numeric Processing, and Metrics
services.

6.4 Tracking Service

Conceptual: This service supports correlation of estimated cost and schedule data with actual
performance of a project; it also provides the capability to track action items to closure. It may
provide triggers or alarms when actual data differ from planned resource usage, or when action
items have not been closed after a certain period.

This service also supports the presentation of such data in human-readable form. Presentation
will typically include transformation of project information into specific formats, such as Gantt
or Pert charts. It could also include hardcopy generation of a WBS, interim briefing charts on
project status, and the like.

Operations: Examples of tracking operations include:

"* Gather metrics related to current status of a project and its constituent work activities

"* Compare cost, size, and resource estimates with actual amounts

"* Read and display status of all project variables (e.g., milestones met, cost, labor hours,
etc.)

"* Produce project data and summary information in various formats (e.g., according to the
formatting rules of a given template, as a group of slides, based on a WBS, etc.)

Types: This service may need input from a personnel or an accounting database. As project
personnel change through the life of a project, the cost for individuals will change, thus altering
the overall cost estimates.

Relationships to other services: This service may interact with the Estimation and Schedul-
ing services. It may also interact with the Software Requirements Engineering service for pro-
viding prototyping capabilities and with several of the Support services for manipulating and
presenting project data.

NAWCADWAR-93023-70

50

Examples: SME (Software Management Environment) from NASA/GSFC allows for a knowledge-
based approach to compare current resource expenditures to historical baselines. Presentation
tools that produce Gantt and Pert charts are also examples of the operations of this service.

NAWCADWAR-93023-70

Chapter 7

SUPPORT SERVICES

Support services include services used by all users. They generally include those services asso-
ciated with processing, formatting, and disseminating human-readable data; they also include
services that provide support for use of the computer system itself.

This chapter describes the following services:

"* Common Support services

- Text Processing service
- Numeric Processing service
- Figure Processing service

- Audio and Video Processing service
- Calendar and Reminder service
- Annotation service

"* Publishing service

"* Presentation Preparation service
"* User Communication services

- Mail service
- Bulletin Board service
- Conferencing service

"* PSE Administration services

- Framework Administration and Configuration services
- Tool Installation and Customization service
- PSE User and Role Management service
- PSE Resource Management service
- PSE Status Monitoring service
- PSE Diagnostic service
- PSE Interchange service
- PSE User Access service

51

NAWCADWAR-93023-70

52

7.1 Common Support Services

Interaction among PSE users is generally based on a set of standard representations. Of these
the most important are textual information, numbers, and figures. In addition, a number of
emerging technologies indicate that PSE users will also make growing use of digitized audio and
video information. The Common Support services create representations relating to all of these
information media that other services may use in providing their services.

Most of these services, as well as some other Support services, have a set of basic operations, such
as create, modify, delete, move, copy, or save. The item in question for each service, however, is
considerably different, and though there is an apparent duplication in the descriptions of these
operations, there is a substantial difference in the nature of the operations themselves. The
redundancy in the service descriptions below is, therefore, a necessary one.

However, there are many other seemingly similar services often found in existing environments,
whose principal work is only to perform some kind of database lookup or modification; the most
obvious example might be a computerized telephone directory or namelist. While the Reference
Model considers these as potentially significant support services, it was considered impractical
to enumerate each as a separate service.

7.1.1 Text Processing Service

Conceptual: The ability to create and manipulate textual information within the PSE is a
service of primary importance. It is involved in supporting the activities of planning, design,
documentation, engineering, and most management activities throughout the lifecycle of any
project.

Text may be viewed either as characters on a two dimensional plane, with operations available
to navigate on the plane, inserting and modifying text as needed, or as structured objects (e.g.,
graph, tree, table, or formula) with operations available to also navigate around this structure
making changes as needed.

Operations: Examples of text processing operations include:

* Create, modify, delete, and save text for future use

e Import externally produced text into a format usable by this service

@ Export text in various formats

e Format or print text or documents

e A collection of text manipulation primitives including

- move, copy, or input text

- include or merge previously saved text with current text

NAWCADWAR-93023-70

VERSION 1.0 53

- search for, replace, or compare text strings

"* Format document, create template, print

"* Check spelling and grammar, lookup (i.e., in dictionary or thesaurus)

"* Create and manipulate textual table

Rules: Depending upon the services implemented in the PSE, the Text Processing service
may need to implement text format or template design format rules, spelling or grammar rules,
thesaurus substitution rules, tool or file format rules, and textual table design or format rules.

Types: The Text Processing service requires an underlying character set for representing text
as well as any required special symbols. Schema may be defined giving templates for words,
paragraphs, chapters, tables, equations and other design template aspects.

External: This service may be used by other services within the PSE (e.g., electronic mail) or
may be invoked directly by the user of the PSE to create textual objects.

Internal: Objects referenced by the Text Processing service are often files in the file system or
objects in the object management system. More complex structures can also be used, such as
graphs or tree structures linking parts of a document, such as in a syntax-directed editor.

Relationships to other services: Text Processing services may interact with any PSE service
requiring the use and manipulation of textual information for user input, display, output or tool
or file textual format conversion.

Examples:

e General editors such as vi or emacs

e Specialized editors, such as context sensitive editors

* Syntax-based editors (DEC's LSE, research editors like Mentor, SUPPORT, or CPS)

* Text manipulation tools such as awk and grep.

7.1.2 Numeric Processing Service

Conceptual: The ability to create and manipulate numeric information (e.g., spreadsheets,
libraries of standard mathematical functions, statistical packages) within the PSE is one of the
major services involved in supporting the activities of planning, budgeting, and management of
projects.

Operations: Examples of numeric processing operations include:

* Create, modify, edit, delete, and save formulas and spreadsheets

NAWCADWAR-93023-70

54

"* Import or export spreadsheet data in various tool or file formats

"* Format or print numbers, formulas, or calculated results

"* A collection of number and formula manipulation primitives including

- move, copy, or input numbers or formulas

- include or merge previously saved spreadsheets with current values

- search for, replace, or compare number or formula strings

"* Create, manipulate, calculate, and print mathematical formats and templates

"* Calculate general arithmetical operations such as square root, logarithm, sine, cosine, etc.

"* Create and manipulate numeric tables

Rules: Depending upon the services implemented in the PSE, the Numeric Processing service
would need to implement mathematical format or template design format rules, including math-
ematical function input parameter or calculation rules, spreadsheet tool or file format rules, and
numeric table design or format rules.

Types: The Numeric Processing service would need to define valid number formats, that is,
integer, fixed point, floating point or scientific and limits, implemented mathematical functions
and their parameters, the basic formula format or symbol definitions and calculation rules, and
the specific spreadsheet or non-spreadsheet token model implemented.

Internal: The Numeric Processing service would probably normally be implemented by means
of runtime libraries of mathematical functions, as well as by separate PSE tools, such as a
spreadsheet or calculator applications, designed to be enacted whenever numeric processing
services are needed.

Relationships to other services: Numeric Processing services may interact with any PSE
service requiring the use and manipulation of numeric information for user input, display, output,
tool or file format conversion.

Examples: Spreadsheets such as Lotus 1-2-3, Microsoft Excel, Borland's Quattro pop-up cal-
culators, and separate tools for creating equations or tables (e.g., EQN and TBL) are examples
of this service.

7.1.3 Figure Processing Service

Conceptual: The Figure Processing Service deals with the creation and manipulation of
graphic, image, or documentation figures within the PSE. It involves supporting images for
any other end-user service and activity.

Operations: Examples of figure processing operations include:

* Graphic or image creation, modification or editing, deletion, and saving for future use

NAWCADWAR-93023-70

VERSION 1.0 55

"* Graphic or image manipulation primitives such as zoom, size, shrink, rotate, fill, align,
move to foreground or background, compose or decompose, include or merge previously
saved graphic or image objects with current graphics or images; search for, replace or
compare graphic or image objects

"* Import or export graphics or images in various formats

e Format or print graphics, images or documents

"* Scanning externally produced pictures into a format that can be manipulated by this
service.

Rules: Depending upon the services implemented in the PSE, the Figure Processing service
would need to implement graphic or image or figure format and template design format rules,
tool or file format rules, and graphic, image or figure table design or format rules.

Types: The Figure Processing service may need to define valid graphic, image or figure object
primitives and special graphic object representations, as well as the basic graphic, image or
figure token model implemented.

External: The PSE would automatically invoke Figure Processing service functions whenever
needed by other services; these services may also be invoked directly by the PSE user.

Internal: The Figure Processing service would probably normally be implemented as separate
PSE tools, that is, graphic, image or figure editor applications, designed to be invoked by the
framework whenever figure processing services are needed by other services, tasks, functions or
tools active in the PSE.

Graphic data is often stored either as a bit-mapped (or raster) data object representing the
pixels thai will be the picture, or as a set of rules for drawing the picture (e.g., as a set of
vectors).

Relationships to other services: The Figure Processing service may interact with any PSE
service requiring the use and manipulation of graphic, image or figure information for user input,
display, output, tool, file format conversion or directly by the PSE user.

Examples: Examples of the Figure Processing service include independent drawing tools such
as MacDraw, MacPaint, xfig under X Windows, and pic for Unix troff.

7.1.4 Audio and Video Processing Service

Conceptual: The ability to capture, create and manipulate data that is based on audio- or
video-based sources will soon become a necessary capability of PSEs. There are numerous tech-
nologies now emerging, including enhancement of graphical devices, animation, "ink" (computer
manipulation of hand-written text), and similar means of computer processing of digitized audio
and video data. Although these capabilities are all currently in relative infancy, manly of them

NAWCADWAR-93023-70

56

will soon be common. It may be the case that some of these capabilities will eventually be
regarded as proper either to the Framework or even platform or hardware services.1

The integration of these services with currently existing services will also be likely. For instance,
voice tagging of an ASCII text file, or freezing a video image containing numeric data and
then capturing that data for inclusion in a spreadsheet, are likely possibilities for integrating
multimedia operations with "traditional" computer tools.

Operations: Examples of audio and video processing operations include:

"* Create, modify, and delete sound and video data objects

"* Record, playback, and transmit audio and video data objects

"* Transform data from one form (e.g., audio) into another form (e.g., ASCII text).

"* Store audio and video data in other formats (e.g., PostScript)

Relationships to other services: This service may have a close relationship with the Frame-
work's Dialog service. This service may also interact with the Text, Numeric, and Figure
Processing services, the Publishing service, the Mail service, and any other services in the envi-
ronment that deal with human-readable information.

7.1.5 Calendar and Reminder Service

Conceptual: This service provides the means for a user to keep an electronic schedule of
meetings, deadlines, and similar important dates and times. This service may be a passive one,
i.e., simply an electronic form of a traditional desk schedule. It may also be a more active service,
such as sending automatic reminders of dates and times for deliverables to project members.
initiating actions on objects, or automatically triggering process steps.

Operations: Examples of operations of this service include:

"* Insert and delete items in an electronic calendar

"* Select actions for execution at a given date and time

"* Display and print calendar information in different modes (e.g., entire year, particular
months, weeks, and days)

"* Select actions for execution when specified event occur (e.g., alarms)

Rules: Entries are associated with a date and time

'There has been a proposal to modify the NIST/ECMA Framework's Prescntation service to accommodate
some of these emerging technologies.

NAWCADWAR-93023-70
0

VERSION 1.0 57

External: The external interface to the Calendar and Reminder service is based on the display
of a calendar. This calendar can be displayed at different levels of granularity (day, week, year).

Relationship to other services: This service may interact with the other Common Support
services, with the Mail service, and with several of the Project Management services.

Examples: Synchronize is an example of this service.

7.1.6 Annotation Service

Conceptual: The Annotation service provides for associating comments with existing objects.
The comments may be in the form of text, diagrams, audio, or video.

Operations: Examples of operations of this service include:

"* Add, delete, or modify commentary associated with an object

"* Copy or display object with or without commentary

"* Order commentary by date, time, size, or author

"* Connect commentary to multiple objects

Rules: Attaching a comment to an object cannot adversely affect existing uses of that object.

Modification of a comment may be limited to the author or administrator.

Reading of comments or certain aspects of the comments may be restricted to specific individuals.

Types: The comment may be text, diagram, audio, video, or a mixture of these.

Internal: A common implementation model is the use of a central comment database (e.g.,
RDBMS, OODBMS). All comments are gathered and managed in that database, although the
objects to which the comments apply may be external to it.

Relationships to other services: The Annotation service may interact with the Text, Nu-
meric, Figure, and Audio and Video Processing services.

7.2 Publishing Service

Conceptual: The basic function of the Publishing Service is to create and print documents.
While this function is .iimilar to the Text Processing Service, the capabilities available in the
Publishing Service are more complex, produce a higher quality document, and are based on a
publishing paradigm.

Operations: Examples of publishing operations include: 2

"2 These are often the same services available through the PSE Text Processing Service.

NAWCADWAR-93023-70

58

"* Create, modify, delete, and save text for future use

"* Import or export text in various formats

"* Create tables of contents, indices, bibliographies, and glossaries

"* Format or print text or documents

"* A collection of text manipulation primitives including:

- move, copy or input text

- include or merge previously saved text with current text

- search for, replace or compare text strings

"* Import figure into document

"* Format document, create template, print

"* Check spelling and grammar, lookup (i.e., in dictionary or thesaurus)

"* Create and manipulate textual table

"* Create style guide

"• Build document

"* Preview document

"* Print template

Rules: In producing a document, many visual design decisions must be considered. Issues such
as font selection, indentation rules, and page layout are very important to producing quality
documents. These decisions are supported by the Publishing Service.

Types: The page is the basic element of the Publishing Service. Pages contain items with
specific semantics, such as words, paragraphs, titles, and figures.

Documents are defined as a collection of pages. Documents have parts with specific semantics,
such as title page, abstract, preface, table of contents, section, bibliography, and appendix.
There are types of documents, such as memoranda, projection charts, technical reports, and
letters. Documents may also contain data whose sources include multimedia data objects, such
as a frozen image from an animated video data file.

Often style guides (i.e., schema) are used to represent the semantics of the parts of a document.

External: The contents of documents are constructed by an author entering it via the keyboard
or by importing it from another service. The output of the Text Processing Service may serve
as input to the Publishing Service.

NAWCADWAR-93023-70

VERSION 1.0 59

The Publishing Service produces data directly to a printing device or into a file for subsequent
processing. The Publishing Service may produce a variety of output formats depending on the
target printer.

Documents may be electronic and should be able to be viewed in that manner. Documents also
may have sound and video content.

Internal: Because of the complexity of the Publishing Service, significant attention is placed
on internal performance and construction of the visual presentation.

There are generally two models for building Publishing Service products. In one case, formatting
information is inserted directly into the document (e.g., troff, WordPerfect). In the other case,
editing commands are external to the document (e.g., TeX style guides) and can be altered
independently to altering the document itself.

Publishing Service previewing often uses a WYSIWYG ("What You See Is What You Get")
paradigm so that the previewed document looks the same as if it were printed.

Relationships to other services: The Publishing Service may interact with the Text, Nu-
meric, and Figure Processing services.

Page items and document parts (e.g., paragraphs, figures, abstracts, appendices) may be objects
visible to the framework Object Management services.

Examples: The Interleaf Technical Publishing System, Framemaker from Frame Technology,
Pagemaker from Aldus, TeX and LaTeX, and troff all provide examples of this service.

7.3 Presentation Preparation Service

Conceptual: The ability to produce materials for presentation is an important component in
the interaction among users of a PSE. Most commonly, the item to be prepared is a transparent
slide for overhead projector. While this service is often implemented as part of the Publishing
Service using a different style guide, it presents enough differences from document preparation
to be considered as a separate service in the PSE reference model.

Operations: The Presentation service has the same set of text processing operations as the
Publishing service. In addition, this service has the following unique operations particular to
formatting slides:

* Format slide

9 Create slide style guide

* Slide build

* Slide preview

* Print template

NAWCADWAR-93023-70

60

Rules: In producing a slide, many visual design decisions must be considered, such as font
selection, indentation rules, and page layout.

Types: The page is the basic element of the Slide Preparation Service. Slides are an ordered
sequence of one-page visual objects. Slides may also be in color or may contain numeric or
graphical information. Slides may also eventually contain animation content (e.g., a single
"slide" projected electronically with a portion of it containing an animated display).

External: The contents of slides may be constructed by entering text via the keyboard or by
importing text or graphics contents from another service. The outputs of the Text Processing
Service can serve as input to the Presentation Preparation Service, or can be electronically
displayed.

Internal: Because of the complexity of the Presentation Preparation Service, significant atten-
tion is placed on internal performance and construction of the visual presentation. There are
generally two models for building Presentation items. In one case, formatting information is
inserted directly into the document (e.g., troff, WordPerfect). In the other case, editing com-
mands are external to the document (e.g., TeX style guides) and can be altered independently
to altering the document itself.

Previewing of slides generally uses a WYSIWYG ("What You See Is What You Get") paradigm
so that the previewed item looks the same as if it were printed.

Relationships to other services: The Presentation Preparation service may interact with
the Text, Numeric, and Figure Processing services and also with the Publishing service.

Examples: Freelance, the SliTeX variant of TeX, and Powerpoint are examples of this service.

7.4 User Communication Services

Interaction between individuals is accomplished by many mechanisms. When such interactions
are pertinent to the activities of a project and are supported by services of the PSE, they are
handled by the User Communication services.

7.4.1 Mail Service

Conceptual: The Mail Service provides for simple communications of notes between computer
system users. It follows a paper letter mail paradigm, while taking advantage of the speed and
connectivity of wide area computer networks. Automatic note forwarding and collecting are also
part of the Mail service.

Operations: The Mail service has the common set of operations needed to create and save
textual information. In addition, the Mail service has the following unique operations:

* Receive, compose, send, reply, forward, broadcast, and acknowledge mail

NAWCADWAR-93023-70

VERSION 1.0 61

"* Electronically review mail

"* Customize the mail's send and receive capabilities

Types: Mail is often stored in objects called folders. Folders are usually related to specific
subjects or addressees.

Mail can be sent to individuals, or mailing lists of many individuals can be created to broadcast
messages to many users at one time.

The basic object of the Mail service is the message; a message is the item that is mailed. Messages
have subfields, such as addressee, author, date, subject, salutation, body, and closing.

External: The external view of the Mail service is via simple, easy to use tool kits (or utilities).

The Mail service is also the primary connection for most users who are communicating across
LAN and WAN networks.

Internal: The major distinguishing feature of the Mail service among the User Communication
services is that it represents one way asynchronous communication between two users. Mail is
sent by one user and the PSE stores the mail until retrieved by the receiver. An acknowledgement
is sometimes sent to the sender stating that the message is waiting for the receiver, but whether
the receiver actually read the message is generally not known.

Relationships to other services: The Mail service may use the Text Processing service
to create messages. It may also interact with the Figure Processing and Numeric Processing
services for creating complex messages. Other services in the PSE may use the Mail service to
communicate with other users, e.g., informing a test team that a program build is completed
and ready for testing.

Examples: Unix mail, MailTool, and Andrew Tool Kit are examples of this service.

7.4.2 Bulletin Board Service

Conceptual: The Buuetin Board service is a form of mail with single sender and multiple
recipients. Information is mailed to the bulletin board and users access the bulletin board as
desired. Unlike mail, which prompts receivers to read the message and may acknowledge receipt
to the sender, a Bulletin Board service simply posts the information, and it is up to each intended
receiver to interrogate the Bulletin Board for new information.

Operations: The Bulletin Board service has the common set of operations needed to create
and save textual information. In addition, the Bulletin Board service has the following unique
operations:

9 Subscribe and post messages

* Browse a bulletin board's messages

NAWCADWAR-93023-70

62

"* Reply or add information to posted messages

"* Forward messages

Types: Often users can "subscribe" to certain bulletin boards, and therefore lists of such users
must be maintained. There are often multiple bulletin boards and the names of such bulletin
boards must be maintained also.

External: Access to the Bulletin Board service is often via an interface that looks very much
like a Mail service interface.

Internal: There are generally two methods for implementing a Bulletin Board service. One way
is via the Mail service. Lists of users subscribing to a given bulletin board are maintained, and
a post operation is simply a Mail service broadcast operation to all users who have subscribed
to this service.

A second method is for the Bulletin Board service to post items into an object in the object
management system, and the browse operation reads that object.

Like the Mail service, this is also an asynchronous communication service.

Relationships to other services: The Bulletin Board service often uses the Mail service
to broadcast messages and the Text Processing service for creating messages. The framework
Communication service is used to send messages across a LAN or WAN.

Examples: Readnews, VAXnotes, and Unix notefiles are examples of this service.

7.4.3 Conferencing Service

Conceptual: Often it is necessary for users to engage in interactive synchronous communica-
tion. This is handled in the PSE by the Conferencing service. While the model implemented
often resembles a two-way telephone call, the service could also be implemented to permit
computer-based conferencing for many users.

Operations: Examples of conferencing operations include:

"* Open connection

"* Send message

"* Close connection

Types: Objects that can be sent and received through this services may include ASCII text,
sound, video, and graphical objects.

External: This is often a separate service that creates multiple viewing areas on the screen,
each representing one end of the conversation.

NAWCADWAR-93023-70

VERSION 1.0 63

Relationship to other services: This service may use the framework's Communication service
to permit synchronous communication to proceed.

Examples: The Unix talk program is an example of this service.

7.5 PSE Administration Services

The administration of a computer system includes services that span all of the levels of the
system. They include services whose province is low-level operating system support, as well as
services that affect the engineering and management users of the environment.

One set of the services described in this section, those dealing with Framework Administration,
are abstracted from the NIST/ECMA Reference Model. These service descriptions are sum-
maries; for a complete description of these services, the reader should consult that document.
The remaining services in this chapter complement the Framework Administration services by
providing similar administration capabilities that pertain to an overall environment. While
these other services overlap with framework administration in some areas, the tasks involved in
environment administration tend to be at a different level of abstraction. An example would
be determining and defining conditions of access controls for a specific process step, as opposed
to simply installing a user and defining a broad set of permissions and privileges. Further con-
sideration may suggest that the overlap between framework administration and environment
administration indicates that some of these service descriptions should be collapsed. However,
at this point in the evolution of the Reference Model, they are considered distinct enough to
warrant separate sections.

7.5.1 Framework Administration and Configuration Services

NB: These service descriptions have been abstracted from the NIST/ECMA Reference Model,
section 10.

Conceptual: A PSE framework's precise configuration may be constantly changing to meet
the changing needs of the enterprise. The following services provide for general framework
administration:

a. Tool Registration service: provides a means for incorporating new tools into an environment
based on the framework in such a way that different framework components coordinate effectively
with the new tool.

b. Resource Registration and Mapping service: provides for the management, modeling, and
control of the physical resources of the environment.

c. Metrication service: provides the ability to collect technical measurement information of
importance to the administration of the framework.

d. User Administration service: provides the ability to add users to an environment, to charac-

NAWCADWAR-93023-70

64

terize their modes of operation and roles (including security privileges), and to make available
to them the resoujces they require.

e. Self-Configuration Management service: supports the existence of many simultaneous coresi-
dent configurations of a framework implementation.

7.5.2 Tool Installation and Customization Service

Conceptual: This service supports the installation, testing, and registration of tools into a
PSE. The service provides the necessary operations to set up default resource limits, default
names, and other operational characteristics for a tool to be used in a PSE. The installation of
a tool may involve significant changes to the tool's implementation or encapsulation of the tool
in some form of tool wrapper. Installation of a tool may also involve specific vendor constraints,
such as the operation of tool-specific daemons to ensure that the number of users agrees with
the number of licenses purchased.

Tools are designed to operate with a specific user interface. However, it is desirable to have
consistency of user interface style and operation across a number of tools. Hence, in addition to
the work required to install a tool, customization of a tool's user interface may be required.

Being able to define a test environment for a recently installed tool protects the PSE from errant
behavior on the part of the new tool. For example, names and defaults are kept local to the
tester and may not affect other versions of the tool present in the PSE.

It may be possible to access alternate versions of the same tool within a single PSE.

Operations: Examples of tool installation operations include:

"* Install tool by setting default resource limits (e.g., CPU time, objects manipulated, file
sizes, and default names) for that tool, or according to a vendor's licensing regulations

"* Customize tool, e.g., by providing a new user interface

"* Create a test environment for a recently installed tool

"* Register a new tool in a PSE by making it known to potential tool users

"* Provide access to multiple versions of the same tool

9 Unregister an existing tool in a PSE, making it unavailable for use

Internal: Installing a tool in a PSE may involve a major amount of work on behalf of the
installer. Amongst other things, the amount of work required is dependent of the compatibility
of the internal architecture of the tool and the PSE. In addition, porting an existing tool to a
PSE may require encapsulation of the tool in some form of tool wrapper.

NAWCADWAR-93023-70

VERSION 1.0 65

Registering a tool makes that tool known to potential users. This may take a number of forms,
including making the tool's name known in a public directory, placing the tool itself in a well-
known place in the PSE, extending the project schema of a database-centered PSE, and so
on.

Relationships to other services: In installing and testing a tool it may be necessary to make
use of the User and Role Management service to partition the PSE and Policy Enforcement
services to protect other users of the PSE. User and Role Management and Policy Enforcement
services are needed to ensure that only authorized individuals can access these Tool Registration
Services and the registered tools themselves.

7.5.3 PSE User and Role Management Service

Conceptual: Users of a PSE must be made known to the system through some form of registra-
tion. Users may be grouped according to particular user roles within the PSE (e.g., developer,
designer, manager). Each role may require particular tools, permissions, data, and so on. These
provide (potentially) overlapping partitions of the PSE.

The utility of this service may be to facilitate security, to aid partitioning of the PSE data for
distribution purposes, to allow easier communication between groups of PSE users, to allow
tasks to be assigned to groups, and so on.

Operations: Examples of role management operations include:

"* Register a new PSE user

"* Deregister an existing PSE user

"* Create a new role of PSE user

"* Delete an existing role of PSE user

"• Assign a user as a member of a PSE role

"* Deassign a user from being a member of a PSE role

"* Select a view or partition of the PSE tools, data, etc., as visible (i.e., accessible) to a
particular role

"* Amend the view defined for a role

Rules: A user can be assigned to more than one role.

Relationships to other services: This service may interact with the Tool Installation and
Customization service and with the Lifecycle Process Engineering services.

Examples: Most available PSEs have user registration facilities. Grouping services are available
to Unix groups and as roles in ISTAR, ASPECT and other PSEs.

NAWCADWAR-93023-70

66

7.5.4 PSE Resource Management Service

Conceptual: The Resource Management service provides the ability to monitor, add, change,
or delete resources available to a PSE. The resources supported include disks, memory, tapes,
quotas, and workstations.

Operations: Examples of resource management operations include:

* Add a resource to the PSE

e Delete a resource from the PSE

9 Amend a resource of the PSE

* Query status of resource in the PSE

e Provide statistics on a resource of the PSE

e Make a resource available to user and/or role

9 Interrogate PSE for availability of a resource

Types: The following are types of resources: disks, memory, tapes, user quotas, workstations,
tape drives, terminals, mainframes.

External: Other services will use the resource management service to determine availability of
resources for an operation.

Internal: This service is concerned only with the user, role, and tools levels; it does not address
the system level platform resource management.

Relationships to other services: This service may interact with the User and Role Manage-
ment the PSE User Access services.

7.5.5 PSE Status Monitoring Service

Conceptual: During execution of the PSE it is necessary to monitor and control the actions
that take place. The information obtained can be used to adjust, or tune, the PSE to improve
its availability and performance. Particular information of use to the PSE administrator may
include statistics on the uptime of the PSE, overall tool usage, resource usage by individuals, av-
erage response time, and so on. This service is analogous to the monitoring functions performed
by a database administrator (DBA) or a system administrator.

Operations: Examples of status management operations include:

e Log actions and events that occur during normal execution of the PSE

* Produce report on PSE usage

NAWCADWAR-93023-70

VERSION 1.0 67

Internal: This service may be heavily dependent on the underlying monitoring services of the
operating system on which the PSE is implemented.

Relationship to other services: This service may interact with the Metrics service.

7.5.6 PSE Diagnostic Service

Conceptual: A PSE must be able to perform self-testing and diagnosis to determine irregular
conditions. The PSE may then be able to correct problems automatically or to send messages
to a PSE administrator for human intervention. The irregular conditions may include inability
to achieve expected network connections, lack or fragmentation of disk or secondary storage
facilities, or inconsistent relationships in the environment (e.g., missing tools).

Operations: Examples of diagnostic operations include:

* Initiate self-test of PSE facilities

e Collapse fragmented storage

* Send diagnostic message to system administrator

e Perform automatic rollback from an invalid environmental condition

Relationships to other services: The service may interact with the PSE Status Monitoring
service, the PSE User Access service, and the Framework's Archive service.

7.5.7 PSE Interchange Service

Conceptual: Communication and sharing between PSEs requires services for interchange be-
tween PSEs. For example, tools and data from one PSE may be transferred to another PSE to
facilitate reuse. This requires external protocols from the PSE to the outside world.

Also, initial loading of data and tools into a PSE must be handled by this service.

Operations: Examples of interchange operations include:

"* Transfer data between PSEs

"* Transfer a tool between PSEs

"* Transfer user/role between PSEs

"* Transfer task description between PSEs

Rules: Consistency of the receiving PSE must be maintained following the interchange.

NAWCADWAR-93023-70

68

Internal: Some form of encryption may occur between the PSE and the outside world in order
to ensure greater security.

Relationships to other services: This service may interact with the framework's Data In-
terchange service. Also, the PSE user access service may constrain access to transfer operations
to trusted users.

7.5.8 PSE User Access Service

Conceptual: The PSE needs to know who is accessing resources and to provide control over
access to the PSE.

Operations: Examples of user access operations include:

"* Login a user into the PSE

"* Authenticate a user of the PSE

"* List all current users of the PSE

"* Logout a user from the PSE

"* Set privileges of a PSE user

"* Set access to resources by another PSE user

Rules: All access to a PSE must be preceded by a login operation.

Users often have a predefined role associated with a login operation, constraining the PSE
resources available to them.

External: Authentification of a user by a login or authentication operation is typically by a
password, but can include other characteristics such as personal facts, fingerprints, ID cards,
handwriting, etc.

Relationships to other services: This service may interact in many ways with access control
at the framework level.

Example: Unix root privileges provide an example of the set-privileges operation, and the Unix
chmod function for altering file access attributes is an example of the set-access operation. The
ASPECT PSE uses publish and acquire operations to allow other roles to have access to private
data.

NAWCADWAR-93023-70

Chapter 8

FRAMEWORK SERVICES

These services comprise the infrastructure of a PSE. They include those services that jointly
provide support for applications, CASE tools, etc. and that are commonly referred to as "the
environment framework." The source for most of these service descriptions is the "Reference
Model for Frameworks of Software Engineering Environments," NIST Special Publication Num-
ber 500-201, December 1991 [NIST]. Although most of the following text has been extracted
directly from this source, the text has been substantially abbreviated. For a full description of
each service, the reader should consult the NIST/ECMA Reference Model itself. The reader
should also note that some services described in other places have also been borrowed from
the NIST/ECMA model; these are included in the section on Framework Administration and
Configuration, which has been borrowed from NIST/ECMA, section ten.

Operating System, Network, and User Command Interface services are also considered as part of
the Reference Model and are included in this section. The service descriptions for these have been
abstracted from those found in the "Draft Guide to the POSIX Open Systems Environment,"
P1003.0, November 1991.

This chapter describes the following services:

"* Operating System services

"* Object Management services

"* Policy Enforcement services

"* Process Management services

"* Communication services

"* User Interface services

"* User Command Interface services

"* Network services

69

NAWCADWAR-93023-70

70

8.1 Operating System Services

NB: These service descriptions have been abstracted from POSIX 1003.0, Section 4.2.4.4.

Conceptual: These services include those services that axe usually considered part of an oper-
ating system or executive. The set of services includes system process management, file manage-
ment, input and output, memory management and print spoolers. These services also include
timing mechanisms, device drivers, and services related to distributed systems.

Operating System services include the following:

a. Services tor creating, managing, and deleting system processes and threads executing within
the scope of an operating system.

b. Services fo- determining system process-, thread- and processor-specific attributes, including
identification, priority, status, scheduling, and resource usage.

c. Node Internal Communication and Synchronization services: handle shared memory, events,
semaphores, signals, message queues, and streams.

d. Generalized Input and Output services: access various device drivers.

e. File-oriented Services: creating, accessing, and deleting directories, subdirectories and files.

f. Event, Error, and Exception Management services: processing asynchronous events in a
system.

g. Time Services: creating, deleting and accessing timers within a system.

h. Memory Management services: allocate both virtual and fixed memory in a system.

i. Logical Naming services: renaming system resources by logica' names rather than physical
addresses.

j. Resource Management services: general computer system management, including:

"* System Operator services to access and control tne system to allow the platform to perform
properly.

"* System Administration services to assume management and • ilocation of system services
to system users.

"* CapabiLity and Security services that support the ability to control usage such that system
integrity is protected from inadvertent or malicious misuse. This includes prevention of
unauthorized access, prevention of data compromise, prevention of service denial, and
security administration.

NAWCADWAR-93023-70

VERSION 1.0 71

8.2 Object Management Services

NB: These service descriptions have been abstracted from the NIST/ECMA Reference Model,
section 4.

Conceptual: The general purpose of the object management services is the definition, storage,
maintenance, management, and access of object entities and the relationships among them.
These services are generally built upon the database and file system services of the platform.
These services include the following:

a. Metadata service: provides definition, control, and maintenance of metadata, typically ac-
cording to a supported data model. Metadata (e.g., schemas) is data about the structure and
constraints of data and objects in the object manager. A Metadata Service allows generic tools
to be written which operate according to the structure of the objects in a particular environment.

b. Data Storage and Persistence service: provides definition, control, and maintenance of objects,
typically according to previously defined schemas and type definitions. It is this service which
permits an object to live beyond the lifetime of the process that created it and allows access to
it by that process or by other processes until it is deleted. This service provides the essential
storage characteristic of a "database" or object management system.

c. Relationship service: provides the capability for defining and maintaining relationships be-
tween objects in the object management system. These relationships provide the links to move
between objects in the object management system. For models, like the E-R data model, they
provide the essential links for building such models. For others, like object-oriented models,
they provide a mechanism for building inheritance and like properties.

d. Name service: supports naming objects and associated data and maintains relationships
between surrogates and names. This service provides for the translation of external names
known to users and tools within an environment to internal, often arbitrary, identifiers of those
objects. The external names can be file names, function names, proce-, names, etc., while the
internal names often represent physical locations in the object management system, arbitrary
counters or hash-coded table-lookup values.

e. Distribution and Location service: provide capabilities that support management and access

of distributed objects. The Location Service may have both a physical and logical model of the

object management system. Distributed software development support is firmly established as

a requirement for SEE frameworks, and this service permits users and tools to locate necessary

objects in the environment.'

f. Data Transaction service: provides capabilities to define and enact transactions. Transact ions

are units of work made up from a sequence of atomic operations. Such operations must not
terminate in a half-completed state. hmplement dtioCT of such operations is hiautilevd by this

service via operations like commit an(d rollback.

'Readers famnilar with POSIX. should note that Network scrvi< ,s dtcscril ' in '()SIX are included in the

D)istribution and Lor-ation service described here and in the lRphl ttin mid Syidihrniiation scrvice described
below.

NAWCADWAR-93023-70

72

g. Concurrency service: provides capabilities that ensure reliable concurrent access (by users
or processes) to the object management system. In multiprocessing systems and distributed
networks it is imperative that certain critical operations execute to completion before their data
can be interrogated by another process. This service provides these capabilities via operations
like acquire and release locks.

h. Operating System Process Support service: provides the ability to define OS processes
(active objects) and access them using the same mechanisms used for objects. This provides
integration of OS process and object management. This service provides the basic support
mechanisms for enacting and controlling active objects in addition to the more static data in
the object management system.

i. Archive service: allows on-line information to be transferred to off-line media and vice-
versa. This service allows users to determine which objects are readily available via the object
management system and which require increased access time by retrieval from off-line media such
as tape. Size of the object management system and size of the individual objects determines
whether and how often the Archive service needs to be used.

j. Backup service: restores the development environment to a consistent state after any media
failure. While the Archive service is often viewed as one used by users of an environment to
manage the objects under their control, the Backup service is often viewed as an administrative
function that provides reliability and integrity to the data in the object management system
and is generally transparent to the users of an environment.

k. Derivation service: supports definition and enactment of derivation rules among objects,
relationships or values (e.g., computed attributes, derived objects). Many objects in the object
management system are often related (e.g., type definitions, source code, object code, executable
modules), and changes to one often affect the others. This service provides the capabilities to
link these objects in such a way so that rules are established for deriving the related objects
from other objects.

1. Replication and Synchronization service: provides for the explicit replication of objects in
a distributed environment and the management of the consistency of redundant copies. The
basic operations of this service are to provide synchronization of multiple objects and manage
replicated objects so that ownership is not hindered.

m. Access Control and Security service: provides for the definition and enforcement of rules
by which access to PSE objects (e.g., data, tools) can be granted to or withheld from user and
tools. Access to PSE objects may be based upon multiple criteria, such as user identification.
current tool, project phase, etc.

n. Function Attachment service: provides for the attachment or relation of functions or op-
erations to object types, as well as the attachments and relation of operations to individual
instances of objects. This provides the basic functionality to implement inheritance properties
in the object-oriented data model.

o. Common and Canonical Schema service: provides mechanisms for integrating tools into an
PSE by providing a means to create common (logical) definitions of the objects (and operations)

NAWCADWAR-93023-70

VERSION 1.0 73

these tools may share from the underlying objects in the object management system. This service
provides the capabilities for creating and modifying such schema in order to integrate new tools
into an existing set of tools and their related data in an environment.

p. Version service: provides capabilities for managing data from earlier states of objects in
the OMS. Change throughout development has to be managed in a PSE and the inclusion of
versioning is one of the means of achieving this. This service provides the capabilities to create
new versions of objects and to recover earlier versions of objects.

q. Composite Object service: creates, manages, accesses, and deletes composite objects, i.e.,
objects composed of other objects. It may be an intrinsic part of the data model or a separate
service. Complex objects in a PSE (e.g., source code, a report) may consist of collections of
other objects linked in specific ways. This service allows for such objects to be considered as
either a single composite object (e.g., a report) or as subsets of this object (e.g., a chapter, a
table).

r. Query service: an extension to the data storage service's read operation. It provides capa-
bilities to retrieve sets of objects according to defined properties and values. These capabilities
can be fairly simple navigation operations (e.g., "Get all objects linked to X") or more complex
inference rules (e.g., "Get all objects linked to X and Y but not to Z").

s. State Monitoring and Triggering service: enables the specification and enaction of database
states, state transformations, and actions to be taken should these states occur or persist. This
service provides an asynchronous event mechanism among independent tools and provides the
capabilities for the object management system to become an inter-tool signalling channel.

t. Sub-Environment service: enables the definition, access and manipulation of a subset of
the object management model (e.g., types, relationship types, operations if any) or related in-
stances. It allows for separate views of the data by users who perform different roles in the
environment. This service permits the PSE to assign views based upon security issues, job
descriptions or project phase, and is related to the Access Control and Security framework
service.

u. Data Interchange service: offers two-way translation between data repositories ini tile same
or different PSEs. This permits the object management system to transfer data to other PSEs.

8.3 Policy Enforcement Services

NB: These service descriptions have been abstracted from the NIST/ECMA Reftrence Model.
Section 9.

Conceptual: The Reference Model uses the term "policy enforcement" to cover the simi-
lar functionality of security enforcement, integrity monitoring, and various object management
functions such as configuration management. The PSE reference model regards security as a
service that intersects many of the boundaries of the reference model service groupings. The set
of services is:

NAWCADWAR-93023-70

74

a. Mandatory Confidentiality service: mandatory confidentiality policies are those established
by an administrator concerning access to the information contained in an object.

b. Discretionary Confidentiality service: discretionary confidentiality policies are those estab-
lished by a user concerning access to the information contained in an object and becomes largely
a matter of personal privacy.

c. Mandatory Integrity service: integrity provides assurance that a system object maintains (or
at least tracks) the "purity" or "goodness" of an object by recording exactly what has been done
to the object and how it was done.

d. Discretionary Integrity service: discretionary integrity controls are implemented by all write,
modify, and append permission functions defined for discretionary access controls.

e. Mandatory Conformity service: conformity policies are the result of automation of operational
models.

f. Discretionary Conformity service: individual users would use conformity enforcement to
structure their own work environment. Under the right conditions, it could turn out to be the
equivalent of "canned procedures" or "command scripts."

8.4 Process Management Services

NB : These service descriptions have been abstracted from the NIST/ECMA Reference Model,
section 5.

Conceptual: The general purposes of the Process Management services in a PSE are the un-
ambiguous definition and the computer-assisted management of project development activities
across total project lifecycles. In addition to technical development activities, these potentially
include management, documentation, evaluation, assesslnent, policy-enforcement, business con-
trol, maintenance, and other activities. The services are:

a. Process Definition service: a PSE may provide facilities to define new process assets in the
object management system, each of which may be a complete process, a composable (sub)process
(or process element), or a process architecture. This service provides the capabilities to define
the activities of a user, a process or the institutionalized business plan of the organization using
the PSE.

b. Process Enactment service: a process definition may be enacted by process agents that can
be humans or machines. This can be via simple "shell" invocations or more complex knowledge-
based approaches to process activities.

c. Process Visibility and Scoping service: in general, several enacting process elements may
cooperate to achieve the goals of a larger process. Logically, the extent of such cooperation
is part of the definition of processes and may be provided by integrated visibility and scoping
features with the process definition service. This provides for creating common data, common
events and propagation of such information among the relevant processes.

NAWCADWAR-93023-70

VERSION 1.0 75

d. Process State service: during enactment, a process has an enactment state that changes.
Certain changes in the enactment state of a process may be defined as events and may act as
conditions or constraints affecting other processes. This service is an analog of the data State
Monitoring and Triggering Service. In this case, certain events are triggered in other processes
when a given process event occurs (e.g., perform "regression test" every time 'source module
updated" occurs).

e. Process Control service: a process being enacted by a PSE may be recorded, measured, con-
trolled, managed, or constrained. This provides for a history to be maintained of the process'
enactment or control of the future execution. Capabilities include metrics collection, audit-
ing and accounting of resources used, scheduling, history collection, query processing, policy
enforcement, configuration management, or process analysis.

f. Process Resource Management service: process agents (e.g., tools, user roles or individual
users) may be assigned to enact various processes and process elements, and this is typically
done under constraints of time, budget, manpower assignments, equipment suites, and process
definition technology (e.g., the formality or completeness of the installed process description
language may be insufficiently unambiguous for totally automated enactment). This service
provides such capabilities.

8.5 Communication Service

NB: This service description has been abstracted from the NIST/ECMA Reference Model, section
6.

Conceptual: This service provides a standard communication mechanism that can be used for
inter-tool and inter-service communication. The services depend upon the form of communi-
cation mechanism provided: messages, process invocation and remote procedure call, or data
sharing. This service may be built upon the framework network services, but it is also relevant
when the environment does not involve a network. Communication is provided tool-to-tool,
service-to-service, tool-to-service, or framework-to-framework.

8.6 User Interface Services

NB: These service descriptions have been abstracted form the NIST/ECMA Reference Model,
section 7.

Conceptual: These services involve all aspects of the PSE and provide for the integration of
the object management system, the process management services, and the tools themselves into
a consistent set of presentation attributes between tools and users of the PSE.

a. User Interface Metadata service: provides for describing the objects used by the User Interface
Services. While similar to the object management system Metadata service, for efficiency, many
systems will create presentation schema outside of the object manager.

NAWCADWAR-93023-70

76

b. Session service: provides the functionality needed to initiate and monitor a session between
the user and the environment. It provides the tool-to-session transformations needed to run
multiple tools on multiple UI devices. This provides the essential characteristics viewed by the
user (e.g., windows, colors, menus, icons).

c. Security service: provides the security constraints needed by the UI. This requires authenti-
cation of the user to the environment and creation of a trusted path between the user and the
data to which the user has access.

d. Profile service: provides the capability for a user to choose preferences such as colors, preferred
layout, personalized menus, etc. The PSE manager may set up particular collections of tools or
repository views for various user roles.

e. User Interface Name and Location service: permits the framework to manage multi-user and
multi-platform environments. It permits various sessions to communicate with various tools and
various display devices. It provides the mechanism for tools to link to the appropriate display
device (e.g., correct window).

f. Application Interface service: provides most of the data transfer capabilities into and out of
the tools and environment. The essential read and write operations from a tool are handled by
this service.

g. Dialog service: provides for integrity constraints between the user and the framework. This
service provides for concurrency constraints in multiprocessing systems and for event triggering
between multiple user and multiple session environments.

h. Presentation service: provides for low-level manipulation of display devices by the user
interface. This service provides the capabilities for creating windows, icons, scrollbars, menus
and other primitive objects used by the Profile service in creating a user session.

i. Internationalization service: provides capabilities concerned with different national interests.
This includes local formats for dates and other data, collating sequences and national character
codes, scanning direction, and other country-specific symbols or icons.

j. User Assistance service: provides a consistent feedback from various tools to the user for help
and error reporting.

8.7 User Command Interface Services

NB: These service descriptions have been abstracted from from POSIX.O, Section 4.7. It has
been proposed that these services be incorporated into the User Interface Dialog section of the
NIST/ECMA RM.

Conceptual: These services provide a command interpreter for a user to interact with an envi-
ronment and provide the functionality of a traditional "shell." They may also be implemented
by graphical, mouse, touch screen, or voice interfaces. User Command Interfaces include the
following:

NAWCADWAR-93023-70

VERSION 1.0 77

a. Services for capturing and redirecting command-line input and output.

b. Services for manipulating file contents (concatenate, sort, search), editing files (e.g., stream
editors), and printing files.

c. Services for controlling execution of applications, such as starting, suspending, or aborting
execution, or moving execution from foreground to background.

d. Services for scheduling commands for periodic execution.

8.8 Network Services

NB: These service descriptions have been abstracted from POSIX.O, Section 4.3.

Conceptual: Network services cover the areas of file transfer, namespace and directory services,
electronic mail services (including facsimile transmission to a computer), and services in support
of distributed environments. Transfer of information among processes within a distributed
environment is provided by these services. Network services include the following:

a. Directory services: allow for the names and addresses of objects to be accessed by an appli-
cation.

b. Application to System services: provide support to an application but not directly controlled
by it. This includes services like remote login, primitives that facilitate electronic mail, remote
printing, remote execution of commands, and network status.

c. Application to Application services: include RPC and network services, such as file transfer,
error handling, and managing connections across a network. Actual reading and writing of data
across a network by an application is accomplished via these services.

d. Data Representation services: allow for data conversion to permit communication across a
wide variety of platforms.

e. Distributed System services: allow for identification and use of resources in a distributed
system.

f. Network Management services: manage network objects and relationships, monitor network
events and provide logging facilities for these.

g. Modem/Dialup services: provide vendors' assistance to customers, downloading updates, and
permit remote. NB: This service is not included in the POSL document.

NAWCADWAR-93023-70

Appendix A

EXTENDED DEFINITIONS OF
KEY TERMS

Environment

An environment is a collection of software and hardware1 components; there is typically some
degree of commonality that renders these components harmonious. There are certain character-
istics, evidenced in the goals and aims of many existing research efforts, that an environment is
likely to exhibit. The definition of an environment is actually a description based on three key
characteristics of an environment.

First, environments are not restricted to facilitating engineering, but provide software support
for many other processes, managerial as well as engineering, necessary to complete projects.
The second characteristic is that the components of the environment will have some degree of
integration, facilitating the interoperation and communication between components, sharing -r
data, and showing a common appearance to a user.

The third characteristic is that environments contain components at different levels of size,
purpose, and complexity. Some portions of an environment comprise an infrastructure, whose
main role is to provide support only for other software components rather than for end-users.
These capabilities may even be invisible to an end-user. Other capabilities, however, will more
likely be directly accessed by the end-user and will provide explicit support for the various
activities of a project. This distinction is not always clear, and the gap between the two categories
is really a spectrum, with some components spanning both rather than simply being in one or
the other. Still, the distinction provides a useful structuring device for the model.

Process and Task

The concepts of "process" and "task" are based on the following definitions: 2

Process: A set of partially ordered steps intended to reach a goal. A process is decomposable

'For the purposes of this document, PSESWG concentrates on the software components of an environtnlent.
2These definitions are borrowed from [FEILER91].

78

NAWCADWAR-93023-70

VERSION 1.0 79

into process steps and process components. The former represent the smallest, atomic level; the
latter may range from individual process steps to very large parts of processes.

Task: A process step typically enacted by a human, requiring process planning and control.

The work carried out by a project can be considered to be a set of tasks that support some
particular development process. Since environments of interest to this reference model will be
used in widely differing application domains to support many types of project, it is necessary that
the model be general enough to be widely applicable. The model therefore does not represent
particular processes or their constituent tasks; instead, it models the functionality provided by
a populated environment in support of any chosen process.

Service

A service is an abstract description of work done by one or more software components; it
is the term we use to describe the functional capabilities of an environment. By using an
abstract description, we can enumerate the capabilities of an environment without reference to
any particular implementation choices.

A service is self-contained, coherent, and discrete. In addition, the notion of service is essen-
tially relative, and thus services can be composed of other services, creating a service hierarchy.
Decisions about the scope of a service description, i.e., on the appropriate functional area of any
particular service, are made through ad hoc knowledge of the expected capabilities of a popu-
lated environment. Key factors for these decisions are lifecycle phase of a project and end-user
roles in the lifecycle.

There is a close relationship between services and tasks: in some ways, these two terms provide
different views of the same activity. For instance, one view might be that the environment
provides an editing service, another view being that to perform the task of editing a user receives
support from the environment. Whichever view one takes, both refer to the same basic activity,
e.g., a human making use of a piece of software, such as emacs, to create or revise textual data.
We can contrast these viewpoints by noting that services are the capabilities of the environment,
while tasks make use of and provide context for those capabilities. For example, in the domain of
Quality Assurance, it is reasonable to refer to such things as testing a new release of a software
system as a task that requires the support of services such as test case generation and report
production.

Framework

The most widely accepted use of this term derives from the NIST/ECMA Reference Model: 3

Current [environments] distinguish between the set of facilities in support of the life-cycle project,
denoted tools, and a set of (relatively) fixed infrastructure capabilities which provide support
for processes, objects, or user interfaces, denoted frameworks.

The NIST/ECMA model describes a set of fifty services common to Software Engineering frame-

3 Reference Model for Frameworks of Software Engineering Environments (Technical Report ECMA TR/33,
2nd Edition). NIST Special Publication 500-201.

NAWCADWAR-93023-70

80

works. These services manage information and computing resources, and also provide for tool
execution, inter-tool communication, user access, and input and output for all user interactions
with a computer-based collection of tools. With minor modification in the service groupings,
this document has accepted the NIST/ECMA definition of a framework and framework services.

The extent of a framework can vary both in its complexity and in the breadth of its services. In
the case of complexity, a framework can span the spectrum from a minimal set of services needed
for software operation to a more complete set of services that represent data and operations at
higher levels of abstraction. The first of these extremes might be an operating system kernel
providing minimal support for input and output and data access (e.g., POSIX 1003.1); the
second extreme might be an implementation that includes a full data repository, complex user
interfaces, fife-cycle process management services and other comparable services (e.g., framework
implementations incorporating ECMA PCTE, X Window System, etc.).

In the case of the relative breadth of framework services, an overriding factor is the domain that
the framework must support. In general, the more restricted the domain, the more a service will
become apparent as a common one, and thus be considered for inclusion in the framework. In
the PSESWG Reference Model, the set of services included are thought to be general enough to
be common to the engineering domains that are included. This may change over time, however,
as more is understood about all of the domains and how they relate to one another.

Interface

The definition of interface from IEEE Software Engineering Standards [IEEE90] is: 4

A shared boundary across which information is passed; [a software] component that connects
two or more other components for the purpose of passing information from one to the other.

This boundary, or interface, provides an external entry point for a software component that
permits either invocation of the software, insertion of input to it, or reception of output from
it. When the software is described in an abstract manner (as when we use the term "service"),
then the interface is at a conceptual level. For instance, in the case of a data storage service and
an access control service, one might assume some relationship between them that would permit
one service to make use of the other; this implies a mechanism by which data or control might
pass between these services. But at the conceptual level, the specific choice of mechanism by
which this occurs is not of interest.

By contrast, in Ln actual environment, the choice of mechanism by which an interface is realized
is a vital issue. The realization of an interface might include choices of formats or protocols, or
could include procedures that exchange invocations and data across the shared boundary. In
either case, this is called a specified interface. As an example, a requirements definition service
and a design definition service in a particular environment might share data through a common
format such as the proposed Common Data Interchange Format (CDIF) standard or by using a
shared Schema Definition Set in PCTE.

Finally, it is useful to note the distinction between a specified interface and implementations of

"4Gloasary of Software Engineering Terminology, ANSI/ISS Std 610.12-1990

NAWCADWAR-93023-70

VERSION 1.0 81

it by different vendors. Different implementations of the same interface may exhibit different
characteristics that may have a significant effect on the practical utility of an implementation
for a given project.

Tool

The definition of a software tool is of great importance to an environment Reference Model,
since the intuitive picture of a populated environment is a framework with a set of installed
tools. However, the definition of a tool is very difficult to achieve. The IEEE definition is: 5

A computer program used to help develop, test, analyze, or maintain another computer program
or its documentation.

This definition is useful, but is not complete. For example, it does not specify whether tools
can be part of the framework. Said differently: must tools be independently executing programs
(such as a compiler or editor) or can they be interfaces into the operating system (e.g., is the
PC-DOS file system a tool? Is an X-Windows implementation a tool?)? These questions are
probably not susceptible to simple answers, nor to answers that will have broad acceptance.

For the purposes of this reference model, however, it may be sufficient to note that whether
perceived as realizing a framework service or an end-user service, a tool is an actual realization
of one or more conceptual services. But there is no strict correlation between a service and a
tool, since one tool may realize many services, or a single service may be realized by several
tools. Tools and services are in many ways similar, but are not the same thing.

5ibid.

NAWCADWAR-93023-70

Appendix B

COMMON PROJECT
ACTIVITIES AND THEIR
RELATION TO REFERENCE
MODEL SERVICES

The purpose of this appendix is to describe several activities typically performed by users of
a PSE as part of project execution. The need for this description is that, while many project
activities occur with a one-to-one agreement between Reference Model services and a user's tasks,
this correspondence between task and service is not evident for all activities. For example, there
is a one-to-one agreement between the Software Design service and the task of creating a design
before building a software product. Similarly, programmers need to compile source programs,
and they make use of the Compilation service through the functionality of such tools as compilers
and preprocessors. However, not all tasks have corresponding services in the reference model.
For example, a common task is often called quality assurance, yet there is no Quality Assurance
service in the model. This is because the task of quality assurance uses existing services already
present in the model.

The following presents several common tasks and the set of services that may be used to im-
plement parts of them. In almost all cases, common support services like Text Processing and
User Communication services will be needed and will not explicitly be mentioned.

B.1 Management Activities

B.1.1 Acquisition Management

Acquisition management supports the activities necessary to develop, award, and track pro-
curements. While some of the examples used here are expressed in terminology common to

82

NAWCADWAR-93023-70

VERSION 1.0 83

government acquisitions, the concepts axe applicable to acquisition activities in general.

Generally, these acquisition activities are developed in conjunction with the Proposal Prepa-
ration activity, described later. That is, an organization, typically a governmental unit, will
plan for an acquisition (Acquisition Planning) and develop a request for procurement (RFP)
by performing RFP Generation. In response, other organizations will respond to the RFP with
the Proposal Preparation task. The acquiring unit then performs a Proposal Evaluation task,
choosing from among the submitted proposals.

Examples of Acquisition Management activities include:

Acquisition planning. Creation of the acquisition plan - Services: Project Management
Scheduling, Estimation and Risk Analysis services.

RFP generation. Create, maintain and modify the statement of work - Services: Technical
services such as System Requirements Engineering and Software Requirements Engineer-
ing services as well as Project Management services such as Estimation Service and the
Numeric Processing service.

Proposal evaluation. Evaluate set of submitted proposals - Services: Numeric Processing
and Estimation services.

Acquisition tracking. Monitor contract once it is awarded - Services: Project Management
Estimation, Scheduling, Risk Analysis and Tracking services.

B.1.2 Project Management

Project Management activities are those that track and manage the development of a project
from concept to completion. Examples of these activities include:

Proposal preparation. Develop proposal in response to RFP - Services: Technical Engi-
neering services such as System Requirements Engineering, Software Requirements En-
gineering, System and Software Design services, Project Management Scheduling, Esti-
mation and Risk Analysis services and Numeric Processing, Publishing, and Presontation
Preparation services.

Project Management. Plan and execute project from concept through deployment - Ser-
vices: Project Management Scheduling, Estimation, Risk Analysis and Tracking services.

Configuration Management. Ensure traceability and reproducibility of a project's end prod-
ucts - Services: System Integration, Software Build, System and Software Traceability,
Configuration Management, Change Management, and Reuse Management services.

NAWCADWAR-93023-70

84

B.1.3 Quality Assurance

The purpose of Quality Assurance (QA) is to assure that thr product meets certain standards
before it is delivered by the developer or accepted by the purchaser. Reliability and correctness
of the source programs are certainly important components of QA, but QA includes many other
attributes.

Examples of Quality Assurance activities include:

Quality assurance planni.,g. Quality objectives must be determined and data needed to
measure such quality must be determined - Services: System Requirements Engineering,
Software Requirements Engineering, Metrics, and Risk Analysis services.

Develop test plans. Develop test plans for achieving quality objectives - Services: Sys-
tem Requirements Engineering, Software Requirements Engineering, System and Software
Testing, Code Verification, Configuration Management and Traceability services.

Quality assurance testing. Quality objectives are monitored and tested - Services: System
and Software Testing and Metrics services, as well as Project Management Estimation and
Tracking services.

B.2 Engineering Activities

B.2.1 System Engineering

System engineering involves those activities that support the technical development and main-
tenance of hardware and software components of a project. For the most part, these activities
fall into the services described by the System Engineering services, but include other services as
well.

Typical System Engineering activities include:

System requirements analysis. Develop requirements and specifications - Services: Sys-
tem Requirements Engineering, System Design and Allocation, and System Simulation
and Modeling Service.

System development. Build the product - Services: System Engineering services with soft-
ware components developed by the Software Engineering services.

System deployment. Operation and maintenance of the product - Services: System and
Software Traceability and Testing services, Configuration Management and System and
Software Design services.

NAWCADWAR-93023-70

VERSION 1.0 85

B.2.2 Software Engineering

Software engineering activities are those activities involved in building and maintaining the
software components of a product. For the most part, these tasks use the Software Engineering
Services.

Typical Software Engineering activities include:

Software requirements engineering. Develop software requirements - Services: Software
Requirements Engineering, Software Design and Software Modeling services.

Software development. Build the software components - Services: all of the Software En-
gineering Services.

Software deployment. Operation and maintenance of the software - Services: Software
Traceability and testing services, Configuration Management Services, Reuse Management,
Software Reverse Engineering and Software Re-engineering services, and the Software De-
sign service.

B.2.3 Process Engineering

Process engineering activities develop the steps in the development process that are to be taken
by other members of the development group. The process may be relatively fixed (e.g., following
a strict "waterfall" development using specific design method, specific compiler, specific testing
and validation tools) or may be partially or totally dynamic (e.g., testing method depends upon
the results of the previously performed code verification activity). For the most part, these tasks
make use of the Life Cycle Process Management services.

Process Engineering activities include:

Process definition. Define development process - Services: Process Definition, Process Li-
brary and Process Exchange services. Processes may be enacted using the Process Usage
service.

Process enactment. Perform the set of development processes - Services: Process Usage
service.

B.3 Supportability Activities

B.3.1 Logistics Support

Supportability and logistics activities ensure the operational availability of systems, including
supportability, readiness and survivability. For computer-based products, logistics supports the

NAWCADWAR-93023-70

86

operation and maintenance of such systems. Although many logistics operations are outside of
the purview of a PSE (e.g., several aspects of personnel training, payroll issues), many are fully
covered by existing PSE services.

The following are those logistics tasks that will undoubtedly be part of the operational charac-
teristics of a PSE.

Supply support. Support the identification, selection for acquisition, cataloging, receipt and
storage, provisioning, issue and disposal of the component parts of a computer-based
product - Services: Configuration Management, Numeric Processing, Estimation, Risk
Analysis services, as well as most of the Acquisition Management tasks mentioned above.

Personnel support. Support personnel requirements including training and operational re-
quirements - Services: Mostly outside the purview of a PSE, although data may be
stored in and make use of PSE object management system. May use Project Management
Scheduling, Estimation, and Tracking services.

Documentation support. Maintain logistics support and product technical documentation
- Services: Text, Numeric and Figure Processing services, Publishing and Presentation
Preparation services, and Configuration Management services.

Computer resources support. Support the management of the logistics support facility -
Services: Project Management Services of Scheduling, Estimation, Risk Analysis and
Tracking services.

B.3.2 Operation and Maintenance

Post-deployment logistics maintains the product in the field. Errors or anomalies must be
tracked from their source to the maintenance organization, and the distribution of corrections
or new system enhancements from the maintenance organization to the field must be supported
and monitored.

Error correction. Correction of errors and anomalies found using the product - Services:
Change Management and Configuration Management services, Project Management ser-
vices, such as Scheduling, Estimation and Tracking, and Technical Engineering services
for correction of errors.

System enhancement. Modification of the product due to changed requirements - Services:
Configuration Management, Re-engineering, Reverse Engineering and all other Technical
Engineering services to produce a new version of the product.

NAWCADWAR-93023-70

Appendix C

RATIONALE

1. What different users/uses are there of the reference model?

The PSESWG intends to use this reference model as a .,ource document for the identification
of interfaces in a PSE. Once those interfaces have been identified, it will be possible to examine
them and determine those that it would be beneficial to standardize. There are likely to be two
sorts of interfaces in this category: those for which candidate standards exist or which are being
actively examined by organized standardization efforts and those for which no such activity can
be identified. The first kind will drive the organized selection process PSESWG will use to
determine the contents of the military standard it is chartered to produce. The second kind will
be used as the basis for encouraging appropriate research, development, and standardization
efforts.

In addition to identifying potential standards, this reference model can be used in many other
ways:

9 To understand the architecture of a proposed or realized system.

An actual or proposed product (for example, a tool or framework) can be characterized
in terms of the elements (services and relationships) of the reference model and the ex-
plicit realization of those elements as a set of operations and data objects. In some ways
we can see this as a cross-section or instantiation of the PSE reference model. Such a
characterization can help others to better understand the product thus described.

9 To compare products

Comparing different PSE products is difficult without a consistent conceptual model within
which to analyze all products. The descriptions of products through services provides a
common vocabulary for discussing them and helps to ensure that any comparison com-
pares like with like. In addition, the categorization of services into end-user and framework
services means that products can be compared at different abstract levels: comparison of
abstract functionality (end-user services) and comparison of support mechanisms (frame-
work services).

87

NAWCADWAR-93023-70

88

e To describe a proposed or required system.

The PSE reference model can be used as the basis for describing a set of PSE require-
ments by giving the services corresponding to a required system, as opposed to an actual
system. This allows the requirements to be described in an abstract way, in terms of
required services and the interface among those services. This is independent of particu-
lar implementation constraints, which can then be examined in the light of the abstract
requirements.

* To discuss implementation of services.

The separation of end-user and framework services means that particular tools and frame-
work realizations will be characterized as providing essentially equivalent end-user services
using different framework services. For example, the end-user service on inter-tool rom-
munications can be realized via different framework services: a remote procedure call
mechanism, message server facilities, data sharing with triggers, and so on.

e To examine product integration issues.

By describing services of actual PSE products a characterization of both their abstract
functionality and implementation mechanisms is provided. When users wish to determine
the extent to which those products can be integrated, these descriptions provide the neces-
sary basis for answering important questions regarding the ease with which the integration
can take place. For example, the end-user service aspects can reveal the extent to which
the products provide similar services, while the framework aspects allow issues of mecha-
nism interoperation to be discussed. Hence, a PSE integrator may use the PSE services
reference model to determine, for a collection of tool products to be integrated, what
services each tool provides and, based on the overlap of provided services and available
base computing environment, to develop a strategy for integration in terms of a particular
environment architecture, identifying interfaces relevant for its realization.

In summary, we note that in presenting the PSE reference model we abstracted from a notion
of tools and framework realizations towards higher level concepts of services and interfaces. In
examining an actual tool or PSE product, the reference model can be used to reflect issues of
functionality and architecture by allowing an abstract description of that product to be produced.

2. Why a service-based approach?

The approach taken in deriving this reference model is one based on services. There are a

number of reasons why this was chosen as the most effective means:

-_ Path of least resistance and most familiar: Functional decomposition is a straightforward
approach for most people working in this area. Many people think of their environments in
terms of "what the PSE does" for them, and this thinking is well-captured in a service-based
approach.

- Nature of related reference models: The PSE reference model builds upon the work of other
related models. Both the NIST/ECMA reference model and the reference model in the POSIX

NAWCADWAR-93023-70

VERSION 1.0 89

Guide to Open Systems Environments had already (independently) taken very similar service-
based approaches. In order to be able to capitalize on this wealth of available work, it made
good sense to adopt a compatible approach.

- Natural fit with end goal: A major goal of the PSE reference model is to help identify interface
areas for standardization. Although such standards are largely known as "interface standards,"
they are by-and-laxge described from a service-based viewpoint. This consistency will make it
much easier to use the reference model in the identification of candidate interface standards than
other approaches.

It should also be understood that taking a service-based approach at this point in the evolution
of the reference model does not mean that other viewpoints were not considered or will not
be found to be important in the future. Early discussions about the approach to be taken
recognized that a complete reference model might well include a number of different points of
view of a PSE. But it was concluded that one of them had to be first and that a service-based
approach was at least as viable as any of the others.

A data-oriented approach is often mentioned as an alternate to the service-based approach
used here. It is highly likely that such an approach will become very important in the process of
understanding the data interface requirements of the services articulated in this reference model,
and may play a role in the future.

A process-oriented approach is also mentioned as an alternate. It is actually not far removed from
the approach taken. As described in chapter three, the determination of end-user services was
driven largely by knowledge and consideration of end-user processes and the service requirements
they generate.

3. How did we select services?

The selection of services has been guided by a number of important principles. These include:

9 By considering typical activities that a PSE supports, it is possible to define the function-
ality that is necessary in order to support those activities. For example, in considering
the maintenance activities of a typical software development project, it is possible to ask
yourself the question "what functionality would I need or expect from a PSE to support
software maintenance activities?". It is those support services that we have captured in
this reference model.

* There are a wide range of potential users of a populated PSE. This includes many forms
of project engineers, project managers, administrative staff, and PSE support staff. Con-
sidering the required functionality of a PSE from each of these PSE users' perspectives
provides a useful way to describe a set of PSE services.

e A number of existing studies have described the expected functionality of some part of a
populated PSE in terms of a set of service descriptions. We have analyzed and expanded
on this work.

The result is a model that provides a description of the functionality that can be expected from

NAWCADWAR-93023-70

90

a populated PSE without being tied to a particular architecture for implementing a PSE, tools
that must be part of the PSE, or expected uses and users of the PSE.

4. How did we group services?

Grouping of services has been based on a combination of factors which imply a coherence to
those services. In many cases this coherence is a result of a functional relationship between the
services (e.g., the OMS services), a temporal relationship (e.g., System Requirements Engineer-
ing services), or based on the expected role of the users (e.g, PSE User and Role Management
service). In all cases the aim of the group is to provide an abstraction of those services that
allows them to be discussed as a whole without concern for the details of which services form
part of that group.

5. How do interfaces facilitate/relate to integration?

The use of the reference model for PSESWG is to act as a basis for identification of interface areas
where existing standards exist, or where future standards might be profitable. By identifyinb
these standards, the possibility exists that tools (potentially from different vendors) will be
available that support the standard.

The consequence of this tool support for standards is that a basis is provided through which shar-
ing is possible. Integration of tools is facilitated by selecting and agreeing interface standards,
but it is not a necessary consequence of standard interfaces. In general, the interfaces provide the
syntactic agreements on which semantic agreements between tools can be built. Without the in-
terface standards providing that syntactic level agreement, the more useful semantic agreements
that are needed are less likely, and more costly to implement.

NAWCADWAR-93023-70

Appendix D

ABBREVIATIONS and
ACRONYMS

4GL Fourth Generation Language
ANSI American National Standards Institute
APPL/A A Process Programming Language based on Ada
APSE Ada Programming Support Environment
ASCII American [National] Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
ASSET Asset Source for Software Engineering Technology
CAD/CAM Computer-Aided Design/ Computer-Aided Manufacture
CARDS Central Archive for Reusable Defense Software
CASE Computer-Aided Software, System Engineering
CDIF CASE Data Interchange Format
CEARM Conceptual Environment Architecture Reference Model
CM Configuration Management
COCOMO Constructive Cost Model

COTS Commercial off-the-shelf
CPL Common Prototyping Language
CPS Cornell (University) Program Synthesizer
CPU Central Processing Unit
DOD Department of Defense
DOS Disk Operating System
EAST Environment of Advanced Software Technology
ECMA European Computer Manufacturers Association
EIS Engineering Information Systems
GOTS Government off-the-shelf
GSFC (NASA) Goddard Space Flight Center
HIPO Hierarchical Input Process Output
HOOD Hierarchical Object-Oriented Design
IDL Interface Description Language

91

NAWCADWAR-93023-70

92

IEEE Institute of Electrical and Electronics Engineers
ILS Integrated Logistics Support
ISEE Integrated Software Engineering Environment
LAN Local Area Network
LSE Language Sensitive Editor
MTBF Mean time between failures
NASA National Aeronautics and Space Administration
NGCR Next Generation Computer Resources
NIST National Institute of Standards and Technology
OMS Object Management System
ORCA Object-based Requirements Capture and Analysis
OS Operating System
PAL Process Asset Library
PC Personal Computer
PCTE Portable Common Tool Environment
PMDB Project Master Data Base
POSIX Portable Operating System Interface for Computer Environments
PSE Project Support Environment
PSESWG Project Support Environment Standards Working Group
QA Quality Assuranca
RAPID Reusable Ada Packages for Information System Development
RETRAC Requirements Traceability
RFP Request For Proposal
RM Reference Model
RPC Remote Procedure Call
RTNI Real-Time Non-Intrusive Instrumentation
SADT Structured Analysis and Design Technique
SEE Software Engineering Environment
SLCSE Software Life-Cycle Support Environment
SME Software Management Environment
SOW Statement of Work
StP Software Through Pictures
TC33 Technical Committee 33
TCOS Technical Committee on Operating Systems
UI User Interface
VDM Vienna Development Method
WAN Wide Area Network
WBS Work Breakdown Structure
WYSIWYG "what you see is what you get"
YACC Yet Another Compiler Compiler

NAWCADWAR-93023-70

Appendix E

REFERENCES

[NIST] Reference Model for Frameworks of Software Engineering Environments. NIST Special
Publication 500-201, December, 1991.

[POSIX] Draft Guide to the POSIX Open Systems Environments. P1003.0, June, 1992.

[OSSWG/RM] Reference Model for Embedded Operating Systems. NGCR Operating System
Standards Working Group, June 1990.

[FEILER91] Software Process Development and Enactment: Concepts and Definition.. Peter
Feiler and Watts Humphrey, SEI, 1991.

(IEEE90] Glossary of Software Engineering Terminology. ANSI/ISS Std 610.12-1990.

93

NAWCADWAR-93023-70

Index

Abbreviations, 91 Customization and Installation (of Tool) Ser-
Acquisition Management Activities, 82 vice, 64
Acronyms, 91
Activities Debugging Service, 31

Acquisition Management, 82 Definitions of Key Terms, 78
Engineering, 84 Diagnostic Service, see PSE Diagnostic Ser-
Logistics Support, 85 vice
Management, 82 Dimension
Operation and Maintenance, 86 Conceptual, 13
Process Engineering, 85 Examples, 14
Project Management, 83 External, 14
Quality Assurance, 84 Internal, 14
Software Engineering, 85 Operations, 13
Supportability, 85 Relationships, 14
System Engineering, 84 Rules, 13

Activities and Services, 82 Types, 14
Administration Services (of PSE), 63
Administration, Framework and Framework End-User Services, 9

Configuration Services, 63 Engineering Activities, 84
Annotation Service, 57 Engineering Services, Technical, 15
Audio and Video Processing Service, 55 Environment, 6, 78
Authentification, 68 vs. Conceptual Model, 10

Estimation Service, 48
Background, 1 Examples Dimension, 14
Build Service, Software, 32 External Dimension, 14
Bulletin Board Service, 61

Figure Processing Service, 54

Calendar and Reminder Service, 56 Framework, 79, 80

Change Management Service, 42Frmwk,7,8
Framework Administration and Corfigura-

Comments on RM, Submission, 98 tion Services, 63
Common Support Services, 52 Framework Services, 6, 9, 69
Communication Service, 75
Compilation Service, 28 Grouping, 10
Conceptual Dimension, 13
Conferencing Service, 62 Host-Target Connection Service, 22
Configuration Management Service, 40
Configuration, Framework and Framework Installation and Customization (of Tool) Ser-

Administration Services, 63 vice, 64

94

NAWCADWAR-93023-70

VERSION 1.0 95

Interchange Service, see PSE Interchange Ser- Project Management Services, 46
vice Project Support Environment Standards Work-

Internal Dimension, 14 ing Group, see PSESWG, 1
PSE Administration Services, 63

Key Terms, Definitions, 78 PSE Diagnostic Service, 67
PSE Dianoterchg Service, 67

Life-Cycle Process Engineering Services, 36 PSE Interchange Service, 67
PSE Resource Management Service, 66

ogistics Support Activities, 85 PSE Status Monitoring Service, 66

Mail Service, 60 PSE User Access Service, 68
Management Activities, 82 PSE User and Role Management Service, 65
Management Services PSESWG, vii, 1-3

Project, 46 Publishing Service, 57
Technical, 40

Metrics Service, 44 Quality Assurance Activities, 84
Model, 7 Rationale, 87

Conceptual vs. Actual Environment, 10 Re-engineering
Discussion, 10 Software Re-engineering Service, 34

Model Description, 5 System Re-engineering Service, 21
Modeling Reading the Service Descriptions, Notes, 13

Software Simulation and Modeling Ser- Reference Model, 7
vice, 26 References, 93

System Simulation and Modeling Ser- Relationships Dimension, 14
vice, 18 Reminder and Calendar Service, 56

Network Services, 77 Resource Management, see PSE Resource

Next Generation Computer Resources, see Management Service

NGCR Reuse Management Service, 42

NGCR, vii, 1. 12 Reverse Engineering Service (Software), 33

Numeric Processing Service, 53 Risk Analysis Service, 48
Role Management, see PSE User and Role

Object Management Services, 71 Management Service
Operating System Services. 70 Rules Dimension, 13
Operation and Maintenance Activities, 86
Operations Dimension, 13 Scheduling Service, 46

Scope of the Model, 3
Policy Enforcement Services, 73 Service, 6, 7, 79
Presentation Preparation Service, 59 Administration (of PSE) Services, 63
Process, 78 Annotation, 57
Process Definition Service, 36 Audio and Video Processing, 55
Process Engineering Activities, 85 Bulletin Board, 61
Process Exchange Service, 38 Calendar and Reminder, 56
Process Library Service, 37 Change Management, 42
Process Management Services, 74 Common Support Services, 52
Process Usage Service, 38 Communication, 75
Project Activities, 82 Compilation, 28
Project Management Activities, 83 Conferencing, 62

NAWCADWAR-93023-70

96

Configuration Management, 40 Software Re-engineering, 34
Customization, see Tool Installation and Software Requirements Engineering, 24

Customization Software Reverse Engineering, 33
Debugging, 31 Software Simulation and Modeling, 26
End-User Services, 6 Software Static Analysis, 30
Estimation, 48 Software Testing, 31
Figure Processing, 54 Software Traceability, 35
Framework Services, 6 Software Verification, 27
Framework, Administration and Config- System Design and Allocation, 17

uration Services, 63 System Engineering Services, 16
Host-Target Connection, 22 System Integration, 20
Installation, see Tool Installation and System Re-engineering, 21

Customization System Requirements Engineering, 16
Life-Cycle Process Engineering Services, System Simulation and Modeling Ser-

36 vice, 18
Mail, 60 System Static Analysis, 19
Metrics, 44 System Testing, 20
Network Services, 77 System Traceability, 23
Numeric Processing, 53 Target Monitoring, 22
Object Management Services, 71 Text Processing, 52
Operating System Services, 70 Tool Installation and Customization, 64
Policy Enforcement Services, 73 Tracking, 49
Presentation Preparation, 59 User Command Interface Services, 76
Process Definition, 36 User Communication. 60
Process Exchange, 38 User Interface Services, 75
Process Library, 37 Service Descriptions, Notes on Reading, 13
Process Management Services, 74 Service Groups, 8
Process Usage, 38 Simulation
PSE Administration Services, 63 Software Simulation and Modeling Ser-
PSE Diagnostic, 67 vice, 26
PSE Interchange, 67 System Simulation and Modeling, 18
PSE Resource Management, 66 Software
PSE Status Monitoring, 66 Build Service, 32
PSE User Access, 68 Design Service. 25
PSE User and Role Management, 65 Engineering Activities. 85
Publishing, 57 Engineering Services, 24
Reminder, see Calendar and Reminder Generation Service. 28

Service Re-engineering Service, 34
Reuse Management, 42 Requirements Engineering Service, 24
Risk Analysis, 48 Reverse Engineering Service, 33
Scheduling, 46 Simulation and Modeling Service, 26
Software Build, 32 Static Analysis Service, 30
Software Design, 25 Testing Service, 31
Software Engineering Services, 24 Traceability Service, 35
Software Generation, 28 Verification Service, 27

NAWCADWAR-93023-70

VERSION 1.0 97

Static Analysis Service Verification, see Software Verification Ser-
Software, 30 vice
System, 19 Video, see Audio and Video Processing

Status Monitoring, see PSE Status Monitor-
ing Service

Submission of Comments on RM, 98
Support Servicvs, 51, see Common Support

Servies
Supportability Activities, 85
System

Design and Allocation Service, 17
Engineering Activities, 84
Engineering Services, 16
Integration Service, 20
Re-engineering Service, 21
Requirements Engineering Service, 16
Simulation and Modeling Service, 18
Static Analysis Service, 19
Testing Service, 20

Target Monitoring Service, 22
Target System, 12
Task, 6, 7, 78
Technical Engineering Services, 15
Technical Management Services, 40
Testing Service

Software, 31
System, 20

Text Processing Service, 52
Tool, 6, 81
Tool Installation and Customization Service,

64
Traceability Service

Software, 35
System, 23

Tracking Service, 49
Types Dimension, 14

User Access Service, see PSE User Access
Service

User and Role Management Service, 65
User Command Interface Services, 76
User Communication Services, 60
User Interface Services, 75

NAWCADWAR-93023-70

SUBMISSION OF COMMENTS

When you submit comments on Version 1.0 of the Reference Model, please send them by elec-
tronic mail to the following addresses:

triciaOnadc.navy.mil or djcOsei.cmu.edu
If you do not have access to an electronic network, please send the comments by postal mail or
FAX to:

Patricia Oberndorf
Naval Air Warfare Center - Aircraft Division

Code 7031
P.O. Box 5152

Warminster, PA 18974-0591
(215) 441-2737 (215) 441-3225 (fax)

To assist us in the processing and tracking of your comments, please use the format below for
each comment.

N NAME ...
! PHONE ...
I FAX ...
! EMAIL ...

MAIL

multi-line address
DATE...

! SECTION ...
VERSIONI .0

£ TOPIC ...
COMMENT

text of comment
RATIONALE

text of rationale
I END

The NAME line contains your name or affiliation (or both).

The PHONE line contains your phone number.

98

NAWCADWAR-93023-70

VERSION 1.0 99

The FAX line contains your FAX phone number.

The EMAIL line contains your electronic mail address.

The lines following the MAIL line contain your postal mailing address.

The DATE line includes the date of you comment. It should be in ISO standard form (year-
month-day), for example, 4 July 1992 is 92-07-04.

The SECTION line should include the Reference Model section number and title, for example,
"4.2.7 Software Static Analysis Services". To help identify it better, this line can also include
the page number.

The TOPIC line should contain a one-line summary of the comment. This line is essential.

The lines following the COMMENT line contain your request for a change, an addition, a
deletion, or anything else about the Section. This can be as long or as short as necessary. When
you make suggested wording changes or additions, please be as specific as possible.

The lines following the RATIONALE line explain why the suggested change(s) (if any is re-
quested) should be made. Please be as clear and concise as possible.

The END line marks the end of the comment form.

A sample comment is shown below for illustration.

NAME A. Reviewer, ABC Inc.
9 PHONE 909-555-5555
! FAX 909-555-4444
! EMAIL revatlizard.abc.com
! MAIL
A. Reviewer
ABC Inc.
MS:23AB-WX
1234 Somestreet St.
Somecity, XX 98765

DATE 93-11-03
! SECTION 7.1.2 Numeric Processing Service

VERSION 1.0
! TOPIC Numeric Processing should not include formatting of formulae
! COMMENT

The text discussing the formats and formula strings should be removed or moved
to the section on Text Processing. Also the examples of EQN and TBL should be
removed.
! RATIONALE
The Numeric Process Service should provide calculation operations of a numerical
nature it should not include the operations that are purely text formatting and
document processing in nature.
! END

Raymond Yeh Naval Air System Command
ISSI Washington, DC 20361-0001
4821 Spicewood Springs Rd., Suite 103 (2 for AIR-5116B)
Austin, TX 78759

Dr. Janusz Zalewski Naval Air Warfare Center
Southwest Texas State University Aircraft Division Warminster
Department of Computer Science P.O. Box 5152
San Marcos, TX 78666-4616 Warminster, PA 18974-0591

(2 for Code 0471)
Mary Ann Zdral (5 for Code 2022; M. Svecz)
Andrulis Research Corp. (5 for Code 6023; R. Shull)
4550 Montgomery Ave. 650 N
Bethesda, MD 20814 Defense Technical Information Center

ATTN: DTIC-FDABMarvin V. Zelkowitz (5 copies) Cameron Station BG5NIST/CSL Alexandria, VA 22304-6145 (2)
Bldg 225, Rm B266
Gaithersburg, MD 20899 Center for Naval Analysis

Bernard A. Zempolich 4401 Fort Avenue
B.A. Zempolich & Assoc, P.O. Box 16268
7004 Lyle Street Alexandria, VA 22302-206
Lanham, MD 20706-3456

Morris Zwick
Vitro Corporation
Bldg. 4-2309
14000 Georgia Ave.
Silver Spring, MD 20906-2972

announcement to publications, such as SEN

NAWCADWAR-93023-70

David JL Tradwell Susan Warshaw
Data Dictionary Systems Limited Defense Information Systems Agency
85 Deepcut Bridge Road CIM - Code XEP
Deepcut, Camberley 701 S. Courthouse Road
Surrey GU16 60P Arlington, VA 22204-2199
UNITED KINGDOM

Neil Wasserman

Ramiro Valderrana Transportation Systems Center

Thunder & Assoc. DTS-920
9807 Raleigh Tavern Ct. 55 Broadway
Bethesda, MD 20814 Cambridge, MA 02142

Ger van den Broek Tony Wasserman
Philips Research IDE
Information and Software Technology 595 Market Street, 10th floor
Building WL-p 3.06 San Francisco, CA 94105
PO. Box 80000
5600 JA Eindhoven Rosa Weber
THE NETHERLANDS Honeywell

MN65-2100

Bill Vaughan 3660 Technology Dr.
NAWC-AD Warminster, Code 7031 Minneapolis, MN 55418

Richard Verrill Ed White
Systems Research Applications Atherton Technology
2000 15th North 1333 Bordeaux Dr.
Arlington, VA 22201 Sunnyvale, CA 94089

Mike Vertal Gio Wiederhold
Cambridge Research Associates DARPA SISTO
1430 Spring Hill Rd., Suite 200 3701 North Fairfax Drive
McLean, VA 22102 Arlington VA 22203-1714

Drew Wade Jerry Winkler
Objectivity, Inc. ASYSA Inc
800 El Camino Real P.O. Box 2308
Menlo Park, CA 94025 Fairfax, VA 22031

Kurt Wallnau Vicki Winniger
Paramax Corp. Naval Surface Warfare Center

1401 Country Club Road Crane Division
Fairmont, WV 26554 Crane, IN 47522-5070

Neal Walters Bill Wong
IBM Federal Systems Company Defense Information Systems Agency

120/025 CIM - Code: XE

9500 Godwin Dr. 701 South Courthouse Road

Manassas, VA 22110-4198 Arlington, VA 22204-2199

Don A. Warner Nicholas Wybolt
Atherton Technology Andersen Consulting

5020 Campus Blvd. 69 West Washington St.

Newport Beach, CA 92660 Chicago, IL 60602

NAWCADWAR-93023-70

Tom Strelich S. Tucker Taft
General Research Corporation Chief Scientist
5383 Hollister Ave. Intermetrics, Inc.
Santa Barbara, CA 93105 733 Concord Avenue

Cambridge, MA 02138
Antoinette D. Stuart
Naval Information Systems Management George Tatge
Center Hewlett-Packard
Bldg. 166 ATIN: Mail Stop 7
Washington Navy Yard 3404 East Harmony Road
Washington, D.C. 20374-5072 Fort Collins, CO 80525-9599

H. G. Stuebing Dr. Dick Taylor
NAWC-AD Warminster, Code 70C University of California

Department of Information and Computer
Bill Sudman Science
NAWCAD Irvine, CA 92717
Code RD94
Patuxent River, MD 20670 Ian Thomas

Software Design & Analysis, Inc.
Matthias Suilman 444 Castro Street, Suite 400
CCI GmbH Mountain View, CA 94041
Dep. Software-Engineering/Ada
P.O. Box 1225 Craig Thompson
D-4470 Meppen Texas Instruments
GERMANY PO Box 655474, MS 238

Dallas, Texas 75265
Tim Sullivan (2 copies)
VP of Marketing J. Phil Thornley
CFI British Aerospace Military Aircraft Ltd.
4030 W. Braker Ln., Suite 550 Warton Aerodrome
Austin, TX 78759 Preston PR4 lAX

Lancashire

Mr. Cliff Sundberg UNITED KINGDOM
Digital Equipment Corporation
Repository Program Office Chris N. J. Tily
110 Spit Brook Road ZKO2-3/N30 UK MoD
Nashua, NH 03062-2698 Room 507 Turnstile House

98 High Holborn
Elijah Sutton London WC1V 6LL
Digital Equipment Corp. UNITED KINGDOM
6406 Ivy Lane, COP3-8
Greenbelt, MD 20770 Richard w. Tobaben

Texas Instruments
W. Linwood Sutton M/S 8016
NRaD NCCOSC 2501 W. University
Code 411 McKinney TX 75070
San Diego, CA 92152-5000

Masato Toyonag

Marti Szczur Hitachi Software Engineering Co., Ltd
NASA/GSFC 6-81 ONOECHO NAKA
Code 522 Yokohama
Greenbelt, MD 20771 JAPAN

NAWCADWAR-93023-70

Christine Shu Dennis Smolak
TRW SIG RSI
One Space Park, R2/2062 1310 Braddock PI, Suite 400
Redondo Beach, CA 90278 Alexandria, VA 22314

Marvin Shugerman Don Sobel
TRW Whitaker Electronic Systems
W1/2667 1785 Voyager Avenue
One Federal Systems Park Drive Simi Valley, CA 93063
Fairfax, VA 22033-4416

Dr. Richard Mark Soley
Fritz Shultz (POSIX.0) Vice President and Technical Director
NIST/CSL Object Management Group, Inc.
Bldg 225, Rm B266 492 Old Connecticut Path
Gaithersburg, MD 20899 Framingham, MA 01701-4568

Barry Siegel Wha Dal Song
NCCOSC NRaD Arizona State University
Code 411 1050 S. Stanley Pl. #123
San Diego, CA 92152-5000 Tempe, AZ 85281

Ian Simmonds Bruce Speyer
SFGL 3500 West Balcones Center Drive
14 rue de la Ferme Austin, Texas 78759-6509
92100 Boulogne
FRANCE Monroe Spierer

Computer Sciences Corp.
Adam Simonoff M/C 330
NSWC 3160 Fairview Park Dr.
N32 Falls Church, VA 22042
Dahlgren, VA 22448

LCDR Vincent Squitieri (10 copies)
Commander, SPAWAR 231-2B4
Space and Naval Warfare Systems Command Space and Naval Warfare Systems Command
SPAWAR 224 (Attn: Dr. R. Singh) 2451 Crystal Park 5, Room 701
5 Crystal Park, Suite 700 Washington, D.C. 20363-5200
Washington, D.C. 20363-5100

Laird W. Stanton
Allen Skinner U.S. Army Materiel Command AMCRD-IC
EER Systems 5001 Eisenhower Ave.
1525 Perimeter Parkway, Suite 350 Alexandria, VA 22333
Huntsville, AL 35806

Vic Stenning
Dennis Smith Anshar Limited
Software Engineering Institute Thriftswood
Carnegie Mellon University Stevens Hill
Pittsburgh, PA 15213 Yateley

Camberley, Surrey GU17 7AY
William R. Smith UNITED KINGDOM
Naval Research Laboratory
Code 5560
4555 Overlook Ave., S.E.
Washington, D.C. 20375

NAWCADWAR-93023-70

Kathy L. Rogers
GHG Corporation Carl Schmiedekamp
1300 Hercules Drive, Suite 111 NAWC-AD Warminster, Code 7033
Houston, TX 77058

James A. SchneiderDavid Rowley Integrated Microcomputer Systems
MKS Inc. P.O. Box 1706
35 King Street North Dahlgren, VA 22448
Waterloo
Ontario N2J 2W9 Mr. Mark A. Servello
CANADA Manager, Software Quality Engineering

American Management Systems, Inc.Burt Rubenstein Western Federal Region
Groupe Bull 1455 Frazee Road, Suite 315
300 Concord Rd. San Diego, CA 92108-4304
MA30-821A
Billerica, MA 01821 Chuck Severance

Michigan State UniversityDr. Andres Rudmik 301 Computer Center
Software Productivity Solutions E. Lansing, MI 48824
P.O.Box 361697
Melbourne, FL 32936 Dr. Michael Shapiro

NRaD NCCOSC
Al Ruemke Code 411
Litton Data Systems Div. San Diego, CA 92152-5000
1725 Jefferson Davis Hwy., Suite 601
Arlington, VA 22202 David Sharon

CASE ASSOCIATES, Inc.Mike Ryer 15686 S. Bradley RD
Intermetrics, Inc. Oregon City, OR 97045
733 Concord Avenue
Cambridge, MA 02138 Kenneth D. Shere

AVTEC Systems, Inc.Frederick E. Sauer 10530 Rosehaven St., Suite 300
Paramax Fairfax, VA 22030
P.O. Box 64525
M/S U2P22 Dr. Thomas E. Shields
St. Paul, MN 55164 Paramax Systems Corp.

STARS-7670Nannette E. Savage 12010 Sunrise Valley Dr.
NUWC Reston, VA 22091-3407
Code 2153
Ft. Trumbull Tony Shiomi
Ncw London, CT 06230 Yamada International

399 Park Ave.
Wait Scacchi New York, NY 10022
University of Southern California
Computer Science Department Tim Shorrock
Los Angeles, CA 90089-0782 British Aerospace Military Aircraft

Software Technology Dept.Douglas Schaus Warton Aerodrome
PRC Inc. Preston,
1235 Jefferson Davis Hwy., Suite 1211 Lancs. PR4 lAX
Arlington, VA 22202 UNITED KINGDOM

NAWCADWAR-93023-70

Gary Pritchett Tom Rhodes (2 copies)

Soflech, Inc., Suite 100 Manager, Software Engineering Group

10875 Rancho Bernardo Road NIST/CSL
San Diego, CA 92127 Bldg 225, Rm B266

Gaithersburg, MD 20899
Thomas H. Probert
Center for High Performance Computing Dr. Tom Rhyne
293 Boston Post Road West, Suite 170 Manager

Marlborough, MA 01752 MCC CAD Framework Labs
3500 W. Balcones Center Drive

David Pruitt Austin, TX 78759
NASA / Johnson Space Center
MC EK4 Tracey Riddle
Houston, TX 77058 DON Space & Naval Warfare Systems

Command
Jean-Louis Puget ATTN: PMW165
ALCATEL / ISR Bldg. 5CPK, Rm 301
523 Terrasses de lAgora Washington, D.C. 20363-5100
91034 EVRY CEDEX
FRANCE William E. Riddle

Software Design & Analysis, Inc.

Charlie Randall 1113 Spruce Street, Suite 500

GHG Corporation Boulder, CO 80302
1300 Hercules, Suite 111
Houston, TX 77058 Stephen J. Ritzman

Advanced Information Systems

Robert Rankin MITRE Corp.
Defence Research Agency 7525 Colshire Drive

RSRE McLean, VA 22102-3481
St. Andrews Rd.
Great Malvern George W. Robertson

Worcestershire NCCOSC NRaD

WR14 3PS Code 924, Bldg C60

UNITED KINGDOM San Diego, CA 92152-5000

Wendy Rauch Dave S. Robinson
Emerging Technologies Group, Inc. EDS-SCICON
5 Kinsella Street Pembroke House

Dix Hills, NY 11746 Pembroke Broadway
Camberley GU15 3XD

Jim Reed UNITED KINGDOM

Kaman Sciences Corp.
Data Analysis Center for Software Clyde Roby

258 Genesee St., Suite 103 Institute for Defense Analyses

Utica, NY 13503 1801 N. Beauregard St.
Alexandria, VA 22311-1772

Ann Reedy
MITRE Corp. Arnold Rochfeld

7525 Colshire Drive Z676 CERMAP

McLean, VA 22102 32 rue Maurice Ripoche
75014 PARIS
FRANCE

NAWCADWAR-93023-70

Shirley Peele Mark Phinney
Fleet Combat Direction Systems Support General Dynamics Electronics
Activity, Dam Neck P.O. Box 300704
Port Hueneme Division Escondido, CA 92030
Naval Surface Warfare Center, Building 127S
Virginia Beach, VA 23461-5300 Woody Pidcock

Boeing
Bruno Pencole P.O. Box 24346
SYSECA Mail Stop 7M
315 Bureaux de la Colline Seattle, WA 98124
92213 Saint Cloud Cedex
FRANCE Hal Pierson

Software Productivity Consortium
Dr. Maria Penedo (6 copies) 2214 Rock Hill Road
TRW Herndon, VA 22070
R2/2062
One Space Park Scott Pilet
Redondo Beach, CA 90278 Boeing Defense & Space Group

P.O. Box 3707
Sandra Perez M/S 4C-63
Concept Technology Seattle, WA 98124-2207
P. O. Box 7266
Fairfax Station, VA 22039 Gilles Pitette

Senior Consultant
Jim Perry CR2A
GTE Government Systems CGI Group
77 "A" Street 19, avenue Dubonnet
Needham, MA 02194 92411 Courbevoie Cedex

FRANCE
Judi Peterson
TRW Prof. Erhard Ploedereder
Mail Station: HAFB/100 Universitaet Stuttgart
1104 Country Hills Dr. Breitwiesenstr. 20-22
Ogden, UT 84403 D-7000 Stuttgart 80

GERMANY
Ron Peterson
TRW Susan S. Poh
Mail Station: HAFB/100 IBM
1104 Country Hills Dr. 10 Callcastle Ct.
Ogden, UT 84403 Gaithersburg, MD 20879

Charles Petrie Leigh Power
MCC El Power Assist
3500 W. Balcones Center 9901 Talleyran Drive
Austin, TX 87859 Austin, TX 78750

Lamont Phemister Gilbert E. Prine
Internal Revenue Service Management Communications
Office of Standards 2000 North 14th St., Suite 220
2500 Wilson Blvd., Suite 402 Arlington, VA 22201
Arlington, VA 22201

NAWCADWAR-93023-70

Sandra Mulholland David L. Olson
Rockwell International Corporation Control Data Corporation
Collins Government Avionics Division Government Operations
MS 124-211 8616 La Tijera Boulevard
400 Collins Road NE Los Angeles, CA 90045
Cedar Rapids, IA 52498

Dr. Leon Osterweil

Bob Munck University of California
Paramax Corp. Department of Information and Computer
12010 Sunrise Valley Dr. Science
M/S 7670 Irvine, CA 92717
Reston, VA 22091 Paul Overbeek

Thomas R. Mylott FELTNO
Naval Surface Warfare Center Physics Electronics Labs
Crane Division P.O. Box 96864
Code 7025, Bldg. 37 2509 JG
Crane, IN 47522-5070 Den Haag

THE NETHERLANDS

John Nissen
GEC - Marconi Software Systems Ronald L. Owens
Elstree Way Soffech, Inc.
Borehamwood 1600 N. Beauregard Street
Hertfordshire WD6 1RX Alexandria, VA 22311
UNITED KINGDOM

Robert K. Page
Chris J. Nolan Naval Air Warfare Center
Technical Director, SDT Italy Weapons Division
Digital Equipment S.p.A. Code 3916 (C2916)
Piazza XX Settembre I China Lake, CA 93555-6001
1-211 Varese
ITALY R. Pariseau

NAWC-AD Warminster, Code 102

Tricia Oberndorf (25 copies)
NAWC-AD Warminster, Code 7031 Elwood T. Parsons

AMP Inc.
Hirzji Ochii P.O. Box 3608
Hitachi Software Engineering Co., Ltd M/S 210-20
6-81 Onoe-Cho Naka-Ku Yokohama City Harrisburg, PA 17105
Kanagawa
JAPAN Angela Pate

Naval Surface Warfare Center

Dr. Huw Oliver Crane Division
Hewlett Packard Laboratories Bldg. 2044, Code 6045
Filton Road Crane, IN 47522-5060
Stoke Gifford
Bristol BS12 60Z Teri Payton
UNITED KINGDOM Paramax

12010 Sunrise Valley Drive

Dan Olivier Reston, VA 22091
Intermetrics, Inc.
2535 Camino Del Rio South, Suite 140
San Diego, CA 92108

NAWCADWAR-93023-70

Masao J. Matsumoto
NEC Corporation Regis Minot
20-24701 GIE Emeraude
Shibaura 2/11/5 c/o Bull
Minato 68 route de Versailles
Tokyo 108 78430 Louveciennes
JAPAN FRANCE

Gary McKee Charlene Mitchell
McKee Consulting MITRE Corp.
P.O. Box 3009 7525 Colshire Drive
Littleton, CO 80161-3009 McLean, VA 22102

Cynthia McMillan Lynn S. Mohler
Teledyne Brown Engineering U.S. Army Materiel Command
10680 Main Street, Suite 280 ATTN: AMCRD-IC, L. Mohler
Fairfax, VA 22030 5001 Eisenhower Ave.

Alexandria VA 22333
Neil McQuage
Boeing Defense and Space Group Ernie Moore
P.O. Box 3999, MS 87-37 SoftLab
Seattle, WA 98124-2499 188 The Embarcadero

San Francisco, CA 94105Hank Mendenhali

Space & Naval Warfare Systems Command Tamra Moore
SPAWAR 231-2 Defense Information Systems Agency
Washington, D.C. 20363-5100 CIM/XER - Fairview Park

701 South Courthouse Rd
Gerard Memmi Arlington, VA 22204-2199
Bull
300 Concord Rd. Carol Morgan
MS MA30/821A CASDE Corp.
Billerica, MA 01821 2800 Shirlington Rd., Suite 600

Arlington, VA 22206Mr. Lynn Meredith

Control Data Corporation Joe Morin
P. O. Box 609 MS BLCN2C SEI
Minneapolis, MN 55440 146 Nason Hill Road

Sherborn, MA 01770Barbara Merritt
IBM Federal Systems Company Ed Morris
Route 17C Software Engineering Institute
Owego, NY 13827 Carnegie Mellon University

Pittsburgh, PA 15213B. Craig Meyers

Software Engineering Institute M. W. Morron
Carnegie Mellon University BNR Europe Ltd.
Pittsburgh, PA 15213 BNR Park, Concorde Road

Norreys Drive, MaidenheadJim Milligan Berkshire, SL6 4AG
Air Force Systems Command UNITED KINGDOM
Rome Laboratory
RL/C3CB
Griffiss AFB, NY 13441

NAWCADWAR-93023-70

Kevin Lewis
Digital Equipment Corp. John Machado
3020 Hamaker Ct., Suite 501 Space & Naval Warfare Systems Command
Falls Church, VA 22041 SPAWAR 231

Washington, D.C. 20363-5100
Randall W. Lichota
Hughes Technical Service Co. Sukan Makmuri
Bldg 1704, Room 107 IDE
Hanscom AFB, MA 01731-5000 34299 Maybird Circle

Fremont, CA 94555
Mark Lichtenhein
SFGL Frank Manola
14 rue de la Ferme GTE Laboratories Incorporated
92100 Boulogne 40 Sylvan Road, MS 62
FRANCE Waltham, MA 02254

Timothy E. Lindquist Aubrey Mansfield
Arizona State University IDE
Computer Science and Engineering Dept. 8330 Booke Blvd., Suite 730
Tempe, AZ 85287-5406 Vienna, VA 22182

Jack Liu Pairn A. Mansouri
Repository Standards SDT Base
Technologies Group SAIC
Digital Equipment Corporation 200 North Glebe Road, Suite 300
M/S ZKO02-1/ 18 Arlington, VA 22203
110 Spitbook IL)ad
Nashua, NH %';062-2698 Jos Marcelis

Joe Lomax FEL - TNO
Naval Air W" -fare Center Oude Waalsdozpezweg 63
M/S 31 P.O. Box 96864
6000 E. 21st Street 2509 JG The Hague
Indianapolis, IN 46219-2189 THE NETHERLANDS

Monte Luhr Roger Martin
Decision Systems Technologies, Inc. Chief, Systems & Software Technology Group
P.O. Box 4989 NIST/CSL
Woodbridge, VA 22194-4989 Bldg 225, Rm B266

Gaithersburg, MD 20899
Steve Lyda
Naval Air Warfare Center Zyg Martynowicz
Weapons Division Teledyne Systems Company
Code 27C 19601 Nordhoff Street
China Lake, CA 93555-6001 Northridge, CA 91324

Brad C. Lyon Tomoo Matsubara
Naval Surface Warfare Center Hitachi Software Engineering Co., Ltd
Code N22 6-81 ONOE-MACHI
Dahlgren, VA 22448 NAKA-KU, YOKOHAMA

JAPAN
Angie Lyons
Northrup
8900 East Washington Blvd.
MS W921/AP
Pico Rivera, CA 90660

NAWCADWAR-93023-70

Tammy Kirkendall
NIST Margaret Law
A266, Technology Bldg. NIST/CSL
Gaithersburg. MD 20899 Bldg 225, Rm A266
Scan Kirkpatrick Gaithersburg, MD 20899

Unisys John F. Leahy M
5151 Camino Ruiz Sun Microsystems
Camarillo, CA 93010 2650 Park Tower Dr., Suite 500

Vienna, VA 22180
Sanford B. Klausner
Cubicon Project Robert E. Lee
2290 Valerie Ct. LSA, Inc.
Campbell, CA 95008 1215 Jefferson Davis Hwy, Suite 1300

Arlington, VA 22202Chuck Koch

NAWC-AD Warminster, Code 7031 Robert C. Leif, Ph.D.
Research Director

Wouter Konings Ada Med
NACISA/ADASCC 1030-Mariposa Avenue
Rue de Geneve, 8 Coral Gables, FL 33146
B-1140 Brussels
BELGIUM Jeff Leon

Hal Computer Systems
Alan H. Kopp 8920 Business Park Drive, Suite 300
Telesoft Austin, TX 78759
2231 Crystal Drive, Suite 500
Arlington, VA 22202 William C. Lev

Lockheed
Tom Kraly Org 8M01, Bldg 586
IBM Federal Systems Company 1111 Lockheed Way
6600 Rockledge Dr. Sunnyvale, CA 94089-3504
Bethesda, MD 20817

Remy Levy
Dr. Jack Kramer SFGL
DARPA 14 rue de la Ferme
1500 Wilson Blvd., Suite 317 92100 Boulogne
Arlington, VA 22209 FRANCE

Thomas M. Kurihara Alexander Lewin
US DoD / OSD / DDI / IT SPAWAR 231-2C
2058 Carrhill Road Space and Naval Warfare Systems Command
Vienna, VA 22181 2451 Crystal Park 5

Washington, D.C. 20363-5200
Francois Laferrihre
Syseca Geoffrey R. Lewis
315, Bureaux de la Colline SunSoft, Inc.
92213 Saint Cloud Cedex MS MTV 21-121
FRANCE 2550 Garcia Avenue

Mountain View, CA 94043-11(X)
Frank LaMonica
Rome Laboratory/C3CB
525 Brooks Rd., Bldg. 3
Griffiss AFB, NY 13441-4505

NAWCADWAR-93023-70

Duane W. Hybertson Mark Jones

Lockheed Engineering & Sciences Company Boeing Company

Space Station - SSE System Project P.O. Box 24346

1150 Gemini Avenue M/S 7M-RM

Houston, TX 77058-2742 Seattle, WA 98124

Mike lmber Bernie Kamutzki

23 Mount Drive IBM Toronto Labs

North Harrow 1150 Don Mills Rd

MIDDLESEX North York

HA2 7RW Ontario M3C 1W3

UNITED KINGDOM CANADA

F. GERMAIN Ir, Maj IMM Mansour Kavianpour

Technical Department of the Army IBM Canada Ltd.

Centre for Applied Technologies 895 Don Mills Road

Martelarenstraat, 181 North York

B1800 VILVOORDE (Peutie) Ontario M3C 1V7

BELGIUM CANADA

Sridhar lyengar John Keane

Unisys Corporation Defense Information Systems Agency

19 Morgan CIM/XI - KIDWELL BLDG

Irvine, CA 92718 701 South Courthouse Rd
Arlington, VA 22204-2199

John R. James
Intermetrics, Inc. Steve Kemiji

7918 Jones Branch Drive, Suite 710 QTC
McLean, VA 22012 8700 SW Creekside Place

Beaverton, OR 97005
Warren M. James
Department of Defence Gary Kennedy

Directorate of Naval Combat Systems IBM Federal Systems Company

Engineering 6600 Rockledge Dr.

Underwater Warfare Systems Section Bethesda, MD 20817

CPI-6-16
Campbell Park Offices Judy Kerner

Canberra ACT 2601 The Aerospace Corp.

AUSTRALIA M/S M8/117
P. O. Box 92957

Jovita Jenkins-Bnafa Los Angeles, CA 90009

TRW
One Space Park R2/2044 Hans E. Keus

Redondo Beach, CA 90278 Westmount Technology
P.O. Box 5063

Timothy Jodoin 2600 GB Delft

Naval Air Warfare Center THE NETHERLANDS

Aircraft Division
Range Directorate RD-94 James King

Patuxent River, MD 20674 Boeing Defense and Space Group
P.O. Box 3999, MS 87-37
Seattle, WA 98124-2499

NAWCADWAR-93023-70

Ken Hayter Dr. Maretta T. Holden
Defence Research Agency Boeing Military Airplanes
RSRE M/S 4C-63
St. Andrews Rd. P.O. Box 3707
Great Malvern Seattle, WA 98124
Worcestershire
WR14 3 PS Dave Hollenbeck
UNITED KINGDOM SPAWAR 231-2F

Space and Naval Warfare Systems Command
Diana J. Healey 2451 Crystal Park 5
COMDAC Support Facility Washington, D.C. 20363-5200
4000 Coast Guard Blvd.
Portsmouth, VA 23703 Dr. Bernhard Holtkamp (2 copies)

FhG ISST
James R. Hegerty c/o University of Dortmund
Data Focus Inc. P.O. Box 500 500
12450 Fair Lakes #400 D-4600 Dortmund 50
Fairfax, VA 22033 GERMANY

Dennis Heimbigner Michael Horton
University of Colorado Paramax
Computer Science Department P.O. Box 517
Boulder, CO 80309-6643 Paoli, PA 19301

Jim Hess Ron House
U.S. Army Naval Undersea Warfare Center
Pentagon 3E421 Building 1171(3)
Washington, D.C. 20301 Newport, RI 02841-5047

Bill Hodges Walter R. Houser
Boeing Department of Veteran Affairs
P. O. Box 3999 F&IRM, MS 721
Mail Stop 87-37 810 Vermont Ave. N.W.
Seattle, WA 98124-2499 Washington, D.C. 20420

Bob Hodges Steve Howell
Texas Instruments NSWC White Oak
6550 Chase Oaks Blvd. Code U33
PO Box 869305, MS 8482 Silver Spring, MlD 20903-5100
Dallas, TX 75023

Feng Huang
CDR David Hogen (2 copies) Computer Sciences Corporation
SPAWAR 231-2B 7205 Dubuque Court
Space and Naval Warfare Systems Command Rockville, MD 20855
2451 Crystal Park 5
Washington, D.C. 20363-5200 Phil Hwang

NSWC White Oak
Robert J. Hokanson Code U302
Paramax Systems Corp. Silver Spring, MD 20903-5100
P.O. Box 64525
M/S UIR19
St. Paul, MN 55164-0525

NAWCADWAR-93023-70

Enrique Gomez Mark Stuart Harris
IBM Federal Systems Company Sun Microsystems Federal, Inc.
3700 Bay Area Blvd 2650 Park Tower Drive, Suite 500
Houston, TX 77058 Vienna, VA 22180

John Goodsen Paul Harris
The Dalmatian Group IPSYS Software Plc.
11803 River Rim Rd. Marlborough Court
San Diego, CA 92126 Pickford Street

Macclesfield
Jim Graves CHESHIRE
Sofrech, Inc. SK11 6JD)
3100 Presidential Drive UNITED KINGDOM
Fairborne, OH 45440

Tim Harrison
Richard Grote ISSI
PRC Inc. 9430 Research Blvd.
1500 PRC Drive Echelon IV, Suite 250
M/S 5S2A Austin, TX 78759
McLean, VA 22102

Hal Hart
George Hacken TRW
GEC-Marconi R2/2062
M/S 18 A 14 One Space Park
150 Parish Drive Redondo Beach, CA 90278
Wayne, NJ 07474-0932

Don Hartman
Ran Haddad Hal Computer Systems
Aerospace Corporation 8920 Business Park Drive
M/S M8/166 Austin, TX 78759
P.O. Box 92957
Los Angeles, CA 90009-2957 John F. Harvey

Digital Equipment Corp.
Bob Hairfield 6406 Ivy Lane
PEO STAMIS COP/2-8
Attn: SFAE-PS-S Greenbelt, MD 20770-1443
Mail Stop C3
Fort Belvoir, VA 22060-5895 H. Ludwig Hausen

GMD Schloss Birlinghoven
Paul Hale D-5205 Sankt Augustin 1
IDE GERMANY
2250 Lucien Way
Suite 100 Richard Hawkes
Maitland, FL 32751 Cadre Technologies

222 Richmond St.
Robert P. Hanrahan Providence, RI 02903
US Air Force STSC
OOALC/TISEA
Building 100
Hill AFB, UT 84056

NAWCADWAR-93023-70

Peter Feiler Elizabeth Fong
Software Engineering Institute National Institute of Standards and Technology
Carnegie Mellon University Technology Building. A266
Pittsburgh, PA 15213-3890 Gaithersburg, MD 20899

Henri Felix John Foreman (5 copies)
BULL DARPA/SISTO
121 avenue de Malakoff 801 N. Randolph St., Suite 400
75116 PARIS Arlington, VA 22203
FRANCE

Gene Forte
Sylvester Fernandez Executive Editor, CASE OUTLOOK
Unisys Defense Systems CASE Consulting Group
M.S. U2F13 11830 Kerr Parkway #315
P.O. Box 64525 Lake Oswego, OR 97035 w
St. Paul, MN 55164-0525

Steve Gaede
Dick W. Fikkert SDA
FEL-TNO 636 Arapahoe Ave. #10
Physics Electronics Labs Boulder, CO 80302
P. O. Box 96864
2509 JG Marilyn Gaska
Den Haag IBM Federal Systems Company
THE NETHERLANDS MD 0220

RT 17 C
Maria Fischaleck Owego, NY 13827
IABG
Einsteinstr 20 Boris Gelder
8012 Ottobrunn IABG
GERMANY Einsteinstrasse 20

D-8012 Ottobrun
Herm Fischer GERMANY
Mark V Systems Limited
16400 Ventura Blvd., Suite 303 Mark Gibbons
Encino, CA 91436 British Telecommunications

BT Laboratories
Donna Fisher Martlesham Heath
NRaD NCCOSC Ipswich
Code 412 ENGLAND, IPS FRE
San Diego, CA 92152-5000 UNITED KINGDOM

Roland Flabat Robert T. Goettge
SHAPE Advanced System Technologies, Inc.
CIS/SPB/ISS 12200 E. Briarwood Ave., Suite 260
B-7010 SHAPE Englewood, CO 80112
BELGIUM

Neil M. Goldman
Don Folland USC/Information Sciences Institute
CCTA 4676 Admiralty Way
Gildengate House Marina del Rey, CA 90292
Upper Green Lane
Norwich, NR3 IDW
UNITED KINGDOM

NAWCADWAR-93023-70

CDR Frank DeNap Anthony Earl
SPAWAR 231-2 Mark V Systems Limited
Space and Naval Warfare Systems Command 16400 Ventura Blvd., Suite 303
2451 Crystal Park 5 Encino, CA 91436
Washington, D.C. 20363-5200

Peter Eirich
David Denson Westinghouse
Texas Instruments MS 6139
2750 Prosperity Ave., Suite 100 P.O. Box 746
Fairfax, VA 22031 Baltimore, MD 21203

Professor Jean-Claude Derniame Bob Ekman
CRIN IBM/Federal Systems Corporation
BP 239 182/3Jll
54506 Vandoeuvre Cedex 800 N. Frederick
FRANCE Gaithersburg, MD 20879

Kieran Dill Dr. Mostafa A. Elbagoury
Naval Air Warfare Center IBM Canada Ltd.
6000 E. 21st Street 1150 Eglinton Avenue East
M/S 31 North York
Indianapolis, IN 46219 Ontario M3C 1H7

CANADA
Kevin Dodson
Naval Air Warfare Center Greg Engledove PMS 4123G
Aircraft Division Naval Sea Systems Command
Code RD94 National Center #3 Room 11E28
Patuxent River, MD 20670 Washington, D.C. 20362-0002

Mr. Mike Doub Nick English (2 copies)
Data General VP of Technology
62 Alexander Drive CFI
Research Triangle Park, NC 27709 4030 W. Braker Ln., Suite 550

Austin, TX 78759
Dick Drake
IBM Dona Erb
800 N. Frederick Ave. MITRE Corp.
M/S 18213F11 1120 NASA Road 1
Gaithersburg, MD 20879 Houston, TX 77058

Gail M. Driskill Lucas Escalera
CEA, Inc. Software Process Engineering
1680 East Gude Drive Internal Revenue Service
Rockville, MD 20850 ISM:TM:E

8405 Colesville Rd., Suite 300
Jim Dutton Silver Spring, MD 20910
International Software Systems Inc.
Echelon III Suite 250 Shawn Fanning
9430 Research Blvd. Sofrech, Inc., Suite 100
Austin, TX 78729 10875 Rancho Bernardo Rd.

San Diego, CA 92127

NAWCADWAR-93023-70

Alton Cox Ed Cuoco
U.S. Dept. of Energy Digital Equipment Corporation
AD-247, GTN, Room C-126 110 Spit Brook Road
Washington, D.C. 20585 MS ZK02-1/Mll

Nashua, NH 03062-2698
Gary Cox
IBM Corporation W. H. Cureton
525 Lascade Sun Microsystems
Colorado Springs, CO 80903 PALI 424

2550 Garcia Ave.
Thomas F. Coyle Mountain View, CA 94043
Naval Air Systems Command
AIR-546NC1 Barbara Cuthill (2 copies)
Washington, D.C. 20361-5460 NIST/CSL

Bldg 225, Rm B266
Jay F. Crawford Gaithersburg, MD 20899
Naval Air Warfare Center
Weapons Division Hugh Davis (master for repro to ECMA
Code 316/6216 TC33)
China Lake, CA 93555 ICL

Eskdale Road
Jacqueline R. Crepeau Winnersh
USASDC Wokingham
P.O. Box 1500 Berkshire RG11 5TT
ATT: CSSD-SA-BT J. Crepeau UNITED KINGDOM
Huntsville, AL 35807-3801

John Dawes
Commander, Naval Surface Warfare Center ICL
Attn: Dr. Harry E. Crisp Eskdale Road, Winnersh
White Oak Laboratory WOKINGHAM
Silver Spring, MD 20903-5000 Berkshire RG11 5TI"

UNITED KINGDOM
David Croston-Melling
Croston-Melling Consultancy Ltd. John Day
c/o EuroControl IBM Federal Systems Company
BP15 800 N. Frederick Ave
Bretigny Sur-orge 91222 Gaithersburg, MD 20879
FRANCE

Gianfranco Del Duca
Christian Cuisinier Datamat
GIE Emeraude V. Elio Vittorini 129
68, route de Versailles 1-00144 Roma
BP3 - PC 7B11 ITALY
78430 Louveciennes
FRANCE Patrick De Montis

SAGEM
Robert J. Cunius Avenue du Gros Chene
Business Extension, Inc. 95610 ERAGNY
11737 Flints Grove Lane FRANCE
North Potomac, MD 20878

NAWCADWAR-93023-70

Kathy Chapman LTC Kevin J. Cogan
Digital Equipment Corp. Program Manager, SIDPERS-3
110 Spit Brook Rd. United States Army
ZK02-1/018 PEO STAMIS
Nashua, NH 03062 Bldg. 1464, Stop C-21

Ft. Belvoir, VA 22060
Francois Charoy
CRIN Corinne Cohen
BP 239 ALCATEL
54506 Vandoeuvre Cedex Network Systems
FRANCE 2912 Wake Forest Road

Raleigh, NC 27609
g Chi Chen

Rockwell International William Currie Colket
MC FB 71 AJPO
12214 Lakewood Blvd. The Pentagon, Room 3E118
Downey, CA 90241 Washington, D.C. 20301-3081

Neil Christopher Thomas Conrad
Texas Instruments Naval Undersea Warfare Center
6500 Chase Oaks Blvd, M/S 8408 (PC-drop Code 222, Bldg. 1171/3
PSK2) Newport, RI 02841-5049
Piano, TX 75023

Darren Coolen
Eileen Clark Paramax Systems Canada, Inc.
MITRE Corp. Ste 530 Belmont House
7525 Colshire Road 33 Aldernay Drive
McLean, VA 22103 Dartmouth

Nova Scotia B2Y 2N4
Les Clark CANADA
GEC-Marconi Software Systems
Elstree Way J. Kurt Coroles
Borehamwood U.S. Air Force (AFMC)
Hertfordshire WD6 1RX 1881 C-CSG-SCSS
UNITED KINGDOM Hill AFB, UT 84056-5990

Peter Clark Barry Corson
TASC AIR 5466
55 Walkers Brook Dr. 6820 Colburn Drive
Reading, MA 01867 Annandale, VA 22003

Ronald J. Clarke Dr. Claudio Costa
NCR Corporation Alenia Spa
1700 S. Patterson Blvd. EMD-3 Via Tiburtina KM 12.4
Dayton, OH 45479-0001 POB 7083-00131 Roma

ITALY
Geoff Clow
SotTech, Inc. Joseph Cote
10875 Rancho Bernardo Rd., Suite 100 Treasury Board Canada
San Diego, CA 92127 140 O'Connor Street

Ottawa
Ontario KIA OR5
CANADA

NAWCADWAR-93023-70

Christian Bremeau Ian Campbell
Software Design & Analysis, Inc. GIE Emeraude
444 Castro Street, Suite 400 c/o BULL
Mountain View, CA 94041 68, Route de Versailles

78430 Louveciennes
Rick Brogan FRANCE
Intel Corp.
5000 W. Chandler Blvd Fanny Camilleri
M/S SP1-21 SFGL
Chandler, AZ 85226 14 rue de la Ferme

92100 Boulogne
CDR Steve Brooks FRANCE
SPAWAR 231-2B3
Space and Naval Warfare Systems Command Audrey Canning
2451 Crystal Park 5 ERA Technology LTD
Washington, D.C. 20363-5200 Cleeve Road

Leatherhead, Surrey
Alan Brown (5 copies) KT22 7SA
Software Engineering Institute UNITED KINGDOM
Carnegie Mellon University
Pittsburgh, PA 15213 David Carney (5 copies)

Software Engineering Institute
Kelsey Bruso Carnegie Mellon University
Unisys Corporation Pittsburgh, PA 15213
P.O. Box 64942
MS: 4762 Laura Carr
St. Paul, MN 55164-0942 Convex Computer Corporation

7501 Greenway Center Drive, Suite 800
Fletcher J. Buckley Greenbelt, MD 20770
GESD, GE
MS 148-209 Miguel Carrio
PO Box 3057 MTM Engineering, Inc.
199 Borton Landing Road P.O. Box 10501
Mooreston, NJ 08057-3057 McLean, VA 22102-8501

Gary Burt OUSD(A)
Comcon Attn: Virginia Castor
10810 Guilford Road, Suite 107 Pentagon 3D359
Annapolis Junction, MD 20701-1111 Arlington, VA 20301-3080

Prof. John N. Buxton Deborah Cerino
Department of Trade and Industry Rome Laboratory
Room 809, Kingsgate House RL/C3CB
66-74 Victoria Street Griffiss Air Force Base, NY 13441
London SWlE 6SW
ENGLAND Kar Chan

SPAWAR 231-2F
William Cain Space and Naval Warfare Systems Command
Martin Marietta Energy Systems 2451 Crystal Park 5
Bldg. 9111, M/S 8201 Washington, D.C. 20363-5200
P.O. Box 2009
Oak Ridge, TN 37831-8201

oU.$ CANTAM404r mvenwl'l. C owct 19 e 9 .e,• *0

NAWCADWAR-93023-70

Roy Bell Jodi Bond
Magnavox GTE Government Systems
M/S 10-06 77 A Street, MS/12-02
1313 Production Road Needham Heights, MA 02194
Fort Wayne, IN 46808

Bernard Bonnafoux
Frank Belz CETE
TRW/SIG BP 37000
R2/2062 13791 AIX-EN-PROVENCE CEDEX 3
One Space Park FRANCE
Redondo Beach, CA 90278

Martha Borkan
Mike Berens CDP, CISA COMPASS, Inc.

Martin Marietta SQA 550 Edgewater Drive
12200 Sunrise Valley Drive - S300 Wakefield, MA 08110
Rcston, VA 22091

Peter Borodach
John Bergey Naval Surface Warfare Center
NAWC-AD Warminster, Code 703 Crane Division

Code 6045, Bldg. 2044

John Bestwick Crane, IN 47522-5060
Oracle Europe
Oracle Park Bob Borowski
Bittams Lane Protocol - A Division of Zycad

Guildford Road 500 International Drive

Chcrtsey, Surrey Mount Olive. NI 07828
KTI6 9RG
UNITED KINGDOM Gerard Boudier

GIE Emcraude
Bruce Betker PC 58F
TIC/TISC 68 route de Versailles

203 W. Losey St. 78430 Louveciennes
Room 1180 FRANCE
Scott AFB, IL 62225-5214

Jean-Philippe Bourguignon

Jack Bissell SFGL
UNIX International 14 rue de la Fcrmc
20 Watervicw Blvd 92100 Boulogne
Parsippany, NJ 07054 FRANCE

Eric Black Mike Boyer

Mirador Computing Systems GEC-Marconi Software Systcms

P.O. Box 308 Elstrcc Way

13770 Pcscadero Road Borchamwood
La Honda, CA 94020 Hertfordshire WD6 1RX

UNITED KINGDOM
John J. Blyskal
Software Productivity Consortium Garry Brannum

Process Improvement Division Northrop Corporation

SPC Building B2 Division W921/AP

2214 Rock Hill Road 8900 East Washington Blvd.

Herndon, VA 22070 Pico Rivera, CA 90660

NAWCADWAR-93023-70

PSESWG RM Distribution List: David Baker
Intermetrics, Inc.

Jerry Abrams 733 Concord Avenue
NAWC-AD Cambridge, MA 02138
Code SY 30B, Bldg 2035
Patuxent River, MD 20670 Thomas Baker

Boeing Computer Services
Frank Acello M/S 6C-AJ
Hughes Aircraft Co. P.O. Box 24346
Bldg. 564, M/S C409 Seattle, WA 98124-0346
P.O. Box 92919
Los Angeles, CA 90009 Robert Baker

USC-Information Sciences Institute
Barry J. Ackerman 4676 Admiralty Way
Cadre Tecbnologies Inc. Marina del Rey, CA 90291-6695
222 Richmond Street
Providence, RI 02903 M. Steven Bankston

Solutron Inc.Yawar Ali 1990 No. California Blvd., Suite 830
Bell-Northern Research Ltd. Walnut Creek, CA 94596
P.O. Box 3511, Station C
Ottawa Rodney Barnhart
Ontario K1Y4H7 SEMCOR, Inc.
CANADA 65 West Street Road, C100

Warminster, PA 18974
Brian Allison
Convex Computer Corporation Claude R. Baudoin
3000 Waterview Parkway National Semiconductor
Richardson, TX 75080 M/S 10-145

2900 Semiconductor Drive
Carol Amos P.O. Box 58090
Rational Santa Clara, CA 95052-8090
3320 Scott Blvd.
Santa Clara, CA 95054-3197 Hervi Bazin

SYSECA
Jorgen B. Andersen 315 Bureaux de la Colline
Honeywell Corporation 92213 Saint Cloud Cedex
P.O. Box 21111 FRANCE
Phoenix, AZ 85036

Gary BeckJohn Anderson Martin-Marietta Information Systems
Boeing Defense and Space Group Company
P.O. Box 3999, M/S 87-37 P. 0. Box 590385
Seattle, WA 98124-2499 Mail Stop 810

Orlando, FL 32859-0385
Francois Audras
SYSECA Kirk Beitz
315 Bureaux de la Colline Intermetrics, Inc.
92213 St Cloud 733 Concord Ave.
FRANCE Cambridge, MA 02138

